Risk management is the identification, evaluation, and prioritization of risks (defined in ISO 31000 as the effect of uncertainty on objectives) followed by coordinated and economical application of resources to minimize, monitor, and control the probability or impact of unfortunate events or to maximize the realization of opportunities.
Risks can come from various sources including uncertainty in financial markets, threats from project failures (at any phase in design, development, production, or sustaining of life-cycles), legal liabilities, credit risk, accidents, natural causes and disasters, deliberate attack from an adversary, or events of uncertain or unpredictable root-cause. There are two types of events i.e. negative events can be classified as risks while positive events are classified as opportunities. Risk management standards have been developed by various institutions, including the Project Management Institute, the National Institute of Standards and Technology, actuarial societies, and ISO standards. Methods, definitions and goals vary widely according to whether the risk management method is in the context of project management, security, engineering, industrial processes, financial portfolios, actuarial assessments, or public health and safety.
Strategies to manage threats (uncertainties with negative consequences) typically include avoiding the threat, reducing the negative effect or probability of the threat, transferring all or part of the threat to another party, and even retaining some or all of the potential or actual consequences of a particular threat. The opposite of these strategies can be used to respond to opportunities (uncertain future states with benefits).
Certain risk management standards have been criticized for having no measurable improvement on risk, whereas the confidence in estimates and decisions seems to increase. For example, one study found that one in six IT projects were "black swans" with gigantic overruns (cost overruns averaged 200%, and schedule overruns 70%).
One definition of a Safety Case is that it is a structured argument, supported by evidence, intended to justify that a system is acceptably safe for a specific application in a specific operating environment. Safety cases are often required as part of a regulatory process, a certificate of safety being granted only when the regulator is satisfied by the argument presented in a safety case. Industries regulated in this way include transportation (such as aviation, the automotive industry and railways) and medical devices. As such there are strong parallels with the formal evaluation of risk used to prepare a Risk Assessment, although the result will be case specific. A vehicle safety case may show it to be acceptably safe to be driven on a road, but conclude that it may be unsuited to driving on rough ground, or with an off-center load for example, if there would then be a greater risk of danger e.g. a loss of control or an injury to the occupant. The information used to compile the safety case may then formally guarantee further specifications, such as maximum safe speeds, permitted safe loads, or any other operational parameter. A safety case should be revisited when an existing product is to be re-purposed in a new way, if this extends beyond the scope of the original assessment.