Search this site
Embedded Files
SMART_HSE
  • Home
  • HSE BULLETINS
  • HSE NEWS
  • OIL&GAS OPERATIONS
    • Production Operations
      • MULTISTAGE CENTRIFUGAL COMPRESSORS
      • Cavitation Process
      • P&IDs
      • Steam Turbine
      • Boiler
      • Pumps
      • Heat Exchanger
      • Flare System
      • HVAC System
      • PLC Programming Tutorial
      • SCADA System
      • Types of Valve used in Piping
      • Breathing Valve
      • Subsea Welding
      • Deaerator
      • Ductwork sizing
      • Time-of-Flight measuring principle
      • Vortex Flow Meter
      • The Electromagnetic Flow Measuring Principle
      • The Differential Pressure Flow Measuring Principle (Orifice-Nozzle-Venturi)
      • Differential pressure level transmitter - Endress + Hauser Continuous le
      • Ultrasonic Level Transmitter
      • The Coriolis Flow Measuring Principle
      • Turbidity measurement
      • Dissolved oxygen measurement
      • Potentiometric pH measurement
      • Gas Turbines - Combined Cycle
      • Steam Trap
      • Pneumatic Cylinder
    • Well Operations
      • Well Operations Safety Videos
      • IWCF Training Course
      • Deep Water Drilling
    • Reservoir Management
      • Reservoir Engineering
      • Natural Gas
  • SAFETY VIDEO (Safety Moments)
    • 1. Near Miss, Unsafe Act, Unsafe Conditions
    • 2. Line Of Fire
    • 3. Work at Height
    • 4. Confined Space
    • 5. Lifting Operations
    • 6. Electrical Safety
    • 7. Permit To Work System PTW
    • 8. Fire Safety
    • 9. Excavation Safety
    • 10. Road Traffic Safety
    • 11. Toxic Gas
    • 12. Process Safety
    • 13. Welding Operations
    • 14. Videos of Accidents
    • 15. Ramadan
    • 16. Other Safety Videos
    • -> YouTube HSE Channels
  • ENVIRONMENTAL VIDEO (Moments)
    • 1. Water Management
    • 2. Waste Management
    • 3. Gas Flaring
  • HSE MANAGEMENT SYSTEM
    • ISO 9001
    • ISO 14001
    • ISO 39001
    • ISO 45001 (OHSAS 18001)
    • 1. Risk Management
    • 2. HSE Management in Oil & Gas Industry
    • 3. Health Management
    • 4. Contractor Management
  • EAST WIND
    • Life Saving Rules Program
    • Contract Management
    • Environmental Management
    • Safety Competence Assessment
    • My Personal Commitment
    • Dropped Object Prevention
    • Process Safety
    • Defensive Driving Training
    • Well Operation Inspection Program
    • KPI for Well Ops
    • Five Stars Campaign
    • Booklets for CoW and LSR
    • Hand Working Safety Campaign
    • Inside Lesson Learnt
    • The 7 Hazardous Energies
    • No Crushing, Line of Fire
    • Hazard Identification Program
    • Reporting
    • HSE Walkthrough Site Visit Report
    • HSE IMS Alignment
    • SIMOPS
    • Digitalization
    • Safety Communication
    • Awareness 3.0
  • SMART_HSE DRIVE
    • 00. COVID_19
    • 0. IOGP STATISTICS & REPORT
    • 1. TRAINING & AWARENESS
    • 2. HSE ALERT
    • 3. SAFETY MOMENTS
    • 4. LESSON LEARNT
    • 5. LIFTING OPERATIONS
    • 6. DROPPED OBJECT
    • 7. BOOKLETS
  • HSE WEBINAR & MAIN EVENTS
  • SAFETY VIDEO INDUCTION
  • LESSON LEARNT
  • HSE ALERT & OTHERS WEBSITE
  • WEATHER FORECAST
  • Oil & Gas Companies
SMART_HSE

How to Read P&ID Drawing - A Complete Tutorial

A piping and instrumentation diagram (P&ID) is a detailed diagram in the process industry which shows the piping and process equipment together with the instrumentation and control devices.

Superordinate to the P&ID is the process flow diagram (PFD) which indicates the more general flow of plant processes and the relationship between major equipment of a plant facility.

A piping and instrumentation diagram (P&ID) is defined as follows:

  1. A diagram which shows the interconnection of process equipment and the instrumentation used to control the process. In the process industry, a standard set of symbols is used to prepare drawings of processes. The instrument symbols used in these drawings are generally based on International Society of Automation (ISA) Standard S5.1

  2. The primary schematic drawing used for laying out a process control installation.

They usually contain the following information:

  • Mechanical equipment, including:

    • Pressure vessels, columns, tanks, pumps, compressors, heat exchangers, furnaces, wellheads, fans, cooling towers, turbo-expanders, pig traps (see 'symbols' below)

    • Bursting discs, restriction orifices, strainers and filters, steam traps, moisture traps, sight-glasses, silencers, flares and vents, flame arrestors, vortex breakers, eductors

  • Process piping, sizes and identification, including:

    • Pipe classes and piping line numbers

    • Flow directions

    • Interconnections references

    • Permanent start-up, flush and bypass lines

    • Pipelines and flowlines

    • Blinds and spectacle blinds

    • Insulation and heat tracing

  • Process control instrumentation and designation (names, numbers, unique tag identifiers), including:

    • Valves and their types and identifications (e.g. isolation, shutoff, relief and safety valves, valve interlocks)

    • Control inputs and outputs (sensors and final elements, interlocks)

    • Miscellaneous - vents, drains, flanges, special fittings, sampling lines, reducers and swages

  • Interfaces for class changes

  • Computer control system

  • Identification of components and subsystems delivered by others

P&IDs are originally drawn up at the design stage from a combination of process flow sheet data, the mechanical process equipment design, and the instrumentation engineering design. During the design stage, the diagram also provides the basis for the development of system control schemes, allowing for further safety and operational investigations, such as a Hazard and operability study (HAZOP). To do this, it is critical to demonstrate the physical sequence of equipment and systems, as well as how these systems connect.

P&IDs also play a significant role in the maintenance and modification of the process after initial build. Modifications are red-penned onto the diagrams and are vital records of the current plant design.

They are also vital in enabling development of;

  • Control and shutdown schemes

  • Safety and regulatory requirements

  • Start-up sequences

  • Operational understanding.

P&IDs form the basis for the live mimic diagrams displayed on graphical user interfaces of large industrial control systems such as SCADA and distributed control systems.

Identification and reference designation[edit]

Based on STANDARD ANSI/ISA S5.1 and ISO 14617-6, the P&ID is used for the identification of measurements within the process. The identifications consist of up to 5 letters. The first identification letter is for the measured value, the second is a modifier, 3rd indicates passive/readout function, 4th - active/output function, and the 5th is the function modifier. This is followed by loop number, which is unique to that loop. For instance FIC045 means it is the Flow Indicating Controller in control loop 045. This is also known as the "tag" identifier of the field device, which is normally given to the location and function of the instrument. The same loop may have FT045 - which is the flow transmitter in the same loop.


Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse