artículos de interés

Sistemas mecánicos

Mediante el formalismo de Lagrange encuentran la ecuación de movimiento de un cilindro con sección transversal elíptica que rueda sin deslizar por un plano inclinado. Resuelven numéricamente la ecuación y además estudian experimentalmente al sistema.


Sistemas no holónomos


Sistemas no conservativos


Principio de Hamilton


Fuerzas centrales - Órbitas

  • Non-relativistic contribution to Mercury's perihelion precession, M. P. Price y W. F. Rush, Am. J. Phys. 47, 531 (1979).

  • Precession of the perihelion of Mercury’s orbit, M. G. Stewart. Am. J. Phys. 73, 730 (2005).

  • Measuring the eccentricity of the Earth orbit with a nail and a piece of plywood, Thierry Lahaye, European Journal of Physics 33, 1167 (2012).

  • Illustrating dynamical symmetries in classical mechanics: The Laplace-Runge-Lenz vector revisited, R. C. O. Connel and K. Jagannathan, American Journal of Physics 71, 243 (2003).

  • More on the prehistory of the Laplace or Runge-Lenz vector, H. Goldstein, Am. J. Phys. 44, 1123 (1976).

  • Inverse problem and Bertrand's theorem, Yves Grandati, Alain Bérard and Ferhat Ménas, Am. J. Phys. 76, 782 (2008).

Bertrand’s theorem is formulated as the solution of an inverse problem for classical one-dimensional motion. We show that the solutions of this problem, if suitably restricted, can be obtained by solving an elementary equation. This approach provides a compact and elegant proof of Bertrand’s theorem.


Fuerzas centrales - Dispersión

  • The Scattering of α and β Particles by Matter and the Structure of the Atom, E. Rutherford, Phil. Mag. 6, 21 (1911).

  • The Structure of the Atom, E. Rutherford, Phil. Mag. 27, 488 (1914).

  • Sección eficaz diferencial para objetivos infinitamente rígidos. Differential cross-sections with hard targets, J. L. Brun y A. F. Pacheco, EJP 26, 747 (2005).

  • Kepler's Explanation of the Rainbow, C. B. Boyer, Am. J. Phys. 18, 360 (1950).


Mecánica relativa

  • A brief history of the Coriolis force, de T. Germeka y L. Gostiaux, Europhysics News, 43, 12 (2012).

  • Coriolis force in geophysics: an elementary introduction and examples de F. Vandenbrouck, L. Berthier y F. Gheusi, EJP 21, 359 (2000).


Formalismo de Hamilton


Cinemática y dinámica de rígidos


Relatividad especial

  • On the Electrodynamics of Moving Bodies, A. Einstein, Ann. Phys. 17, 891 (1905).

  • Does the Inertia of a Body Depend on its Energy Content? A. Einstein, Ann. Phys., 17, 891 (1905).

  • An alternate derivation of relativistic momentum, P. C. Peters, AJP 54, 804 (1986).

  • The lock and key paradox and the limits of rigidity in special relativity, E. Pierce, AJP 75, 610 (2007).

According to special relativity, a (longitudinally) moving stick is Lorentz contracted. When it is brought to rest, it must expand to its proper length. But, exactly how this expansion unfolds depends on how the stick is stopped. If the front end hits a brick wall, the rear end must (briefly) continue moving, and the stick contracts even further before expanding; if instead the rear end is suddenly stopped, the front end (briefly) continues, and (surprisingly) the stick overexpands before settling into its proper length. These effects of overexpanding and overcontracting are independent of any classical or molecular elasticity, but are derived entirely from the limits of information travel time imposed by special relativity. I explore these phenomena, inspired by the little known “lock and key” paradox.


Historias