Our fields of research are Computer Algebra and Computations of Commutative Algebra and their interactions with Differential Algebras.
More precisely, we work on:
+ Zero-dimensional ideals of in a polynomial ring, Gröbner bases, and some relevant algebraic invariants
+ Border bases and border basis schemes parametrizing zero-dimensional schemes
+ Differential techniques for study of fat point schemes in (multi-) projective spaces
+ The problem of re-embedding of an affine schemes into a lower-dimensional affine space
+ The Gröbner fans, symbolic powers and differential powers of polynomial ideals
Publications
Kähler differential algebras for 0-dimensional schemes and applications (TNK Linh), Thesis (Ph.D.)–Universität Passau, Passau, 2015.
Various differents for 0-dimensional schemes and applications (LN Long), Thesis (Ph.D.)–Universität Passau, Passau, 2015.
Kähler differentials and Kähler differents for fat point schemes (M. Kreuzer, T. N. K. Linh, and L. N. Long), J. Pure Appl. Algebra 219 (2015), no. 10, 4479–4509, DOI:10.1016/j.jpaa.2015.02.028
Characterizations of zero-dimensional complete intersections (M. Kreuzer and L. N. Long), Beitr. Algebra Geom. 58 (2017), no. 1, 93–129, DOI:10.1007/s13366-016-0311-9
Kähler differential algebras for 0-dimensional schemes (M. Kreuzer, T. N. K. Linh, and L. N. Long), J. Algebra 501 (2018), 255–284, DOI:10.1016/j.jalgebra.2017.12.023
A presentation of the Kähler differential module for a fat point scheme in ℙn1×…× ℙnk (TNK Linh, E Guardo, LN Long), ITM W. Conf. 20 (2018), 01007 DOI:10.1051/itmconf/20182001007
On the Cayley-Bacharach property (M. Kreuzer, L. N. Long and L. Robbiano), Commun. Algebra 47 (2019), 328–354, DOI:10.1080/00927872.2018.1476525
The Dedekind different of a Cayley–Bacharach scheme (M. Kreuzer, T. N. K. Linh, and L. N. Long), J. Algebra Appl. 18 (02) (2019), 1950027, DOI:10.1142/S0219498819500270
On the regularity of the monomial point of a border basis scheme (M. Kreuzer, B. Sipal, and L. N. Long), Beitr. Algebra Geom. 61 (2020), no. 3, 515–532, DOI:10.1007/s13366-019-00482-7
An application of liaison theory to 0-dimensional schemes (M. Kreuzer, T. N. K. Linh, L. N. Long and N. C. Tu), Taiwanese J. Math. 24 (2020), 553-573, DOI:10.11650/tjm/190710
Computing subschemes of the border basis scheme (M. Kreuzer, L. N. Long and L. Robbiano), Internat. J. Algebra Comput. 30 (2020), 1671-1716, DOI:10.1142/S0218196720500599
Kähler differentials of fat point schemes in P1 × P1 (E. Guardo, M. Kreuzer, T. N. K. Linh and L. N. Long), J. Commut. Algebra 13(2) (2021), 179-207, DOI:10.1216/jca.2021.13.179
Hilbert polynomials of Kähler differential modules for fat point schemes (M. Kreuzer, T. N. K. Linh and L. N. Long), Acta Math. Vietnam. 46 (3) (2021), 441–455, DOI:10.1007/s40306-021-00432-3
Algorithms for checking zero-dimensional complete intersections (M. Kreuzer, L. N. Long and L. Robbiano), J. Commut. Algebra 14 (2022), 61-76, DOI:10.1216/jca.2022.14.61
Cotangent spaces and separating re-embedding (M. Kreuzer, L. N. Long and L. Robbiano), J. Algebra Appl. 21 (2022), 2250188, DOI:10.1142/S0219498822501882
The Kähler different for a set of points in Pm × Pn (N. T. Hoa, T. N. K. Linh, L. N. Long, N. T. P. Nhi, P. T. T. Nhan), Bull. Korean Math. Soc. 59 (2022), 929-949, DOI: 10.4134/BKMS.b210544
Restricted Gröbner fans and re-embeddings of affine algebras (M. Kreuzer, L. N. Long and L. Robbiano), Sao Paulo J. Math. Sci. 17 (2023), 242–267, DOI:10.1007/s40863-022-00324-w
The Kähler different of a 0-dimensional scheme (L. N. Long). J. Algebra Appl. 23 (2024), No. 03, 2450056, DOI:10.1142/S0219498824500567
Zero-dimensional schemes and their moduli spaces (LN Long), Habilitation Thesis –Universität Passau, Passau, 2024.
Re-embeddings of affine algebras via Gröbner fans of linear ideals (M. Kreuzer, L. N. Long and L. Robbiano), Beitr. Algebra Geom. 65 (2024), 827–851, DOI:10.1007/s13366-024-00733-2
Differential theory of zero-dimensional schemes (M. Kreuzer, T. N. K. Linh and L. N. Long), J. Pure Appl. Algebra 229 (2025),No. 1, 107815 , DOI:10.1016/j.jpaa.2024.107815
Some line and conic arangements and their Waldschmidt constants (T.D. Huynh, T. N. K. Linh and L. N. Long), J. Korean Math. Soc. (to appear 2025), DOI: 10.4134/JKMS.j240438
Efficent checking of separating re-embeddings (B. Andraschko, M. Kreuzer, L. N. Long), Math. Comput. Sci. 19 (9) (2025), DOI: 10.1007/s11786-025-00616-2
National Publications
Cohomology degrees and reduction indices (TNK Linh), Journal of Science - Hue University of Education 2 (2007), 1859-1612.
The Dedekind different for a uniform set of points in Pn (TNK Linh, LN Long), Hue University Journal of Science: Natural Science 131 (1B) (2022), 81-91, DOI:10.26459/hueunijns.v131i1B.6563
Kähler differential modules and configurations of points in P2 (TNK Linh, LN Long), Dalat University Journal of Science (2022), 48-60, DOI:10.37569/DalatUniversity.12.2.887(2022)
The Gorenstein singularities of a 0-dimensional uniform scheme in Pn (with NT Hoa, NTP Nhi, PTT Nhan, TLD Tra), Journal of Science - Hue University of Education 3(71), (2024).
Note on Restricted Gröbner Fans (TNK Linh, LN Long), Journal of Science - Hue University of Education 3(75) (2025).
Preprints
Computing the Dedekind different of zero-dimensional schemes, preprint 2018.
Optimal re-embedings of border basis schemes (with M. Kreuzer, L. Robbiano), preprint (2022), 49 pages.
The de Rham cohomology of zero-dimensional schemes (with M. Kreuzer), preprint (2024), 15 pages.
The canonical exact sequence of differential modules for 0-dimensional schemes, preprint 2025.
Books and Lecture Notes
Computer Algebra (LN Long), University of Passau, Lecture Note, 2024.
Linear Algebra I (TNK Linh, PD Dong, LN Long, DH Tuan: English and Vietnamese Versions), University of Education, Hue University, 2023.
Elementary Number Theory (TNK Linh, PD Dong, LN Long, DH Tuan), University of Education, Hue University, Preparation.
Coding Theory (LN Long), University of Passau, Lecture Note, 2022.
Principle of Mathematics 1 & 2, University of Education, Hue University, Lecture Note 2024.
Galois Theory (LN Long), University of Education, Hue University, Lecture Note, 2020.
Several Talks
Computational aspect of the uniformity property of finite sets of points , Workshop, Hoi An, 17/08/2025
Hilbert functions for zero-dimensional schemes, Workshop, Hoi An, 17/08/2025
Computational Aspect of Re-embeddings of Affine Algebra, CoCoA school, 13-18/07/2025
Differential methods for zero-dimensional schemes, Workshop, Hanoi, 28/03/2025
Differential techniques for locally Gorenstein schemes, International conference, Tuy Hoa, 07/07/2024