Dielectrophoresis

Dielectrophoresis capture of Staphylococcus epidermidis, clinical isolate ATCC 14490

Gradient Dielectrophoresis: (Bioanalysis, Proteomics, Biomarkers)

In recent years, dielectrophoresis has emerged as a unique and useful tool for investigating, manipulating and capturing small particles. The dielectrophoretic force arises when a non-uniform electric field acts upon permanent or induced dipoles. Insulator-based dielectrophoresis (iDEP) involves the use of insulating geometric features within a microchannel to shape an applied electric field, thus harnessing dielectrophoretic and electrokinetic forces to capture and concentrate particles of interest. This field grows from sixty some-odd years of work in AC dielectrophoresis.  Using DEP, seemingly similar cells can be differentiated based on extremely subtle distinctions such as antigen type on erythrocytes or antibiotic resistance.  Our contribution, so far, is to create a linear separations scheme that uses electrophoretic and dielectrophoretic forces as focusing and differentiating elements. To accomplish this, we use microchannels with a graduated, repeating pattern to selectively capture bioparticles from a complex mixture.

Application of the technology to SARS CoV-2 / COVID-19 Pandemic - Summary

Publications

Biofluid pretreatment using gradient insulator-based dielectrophoresis: separating cells from biomarkers. Jie Ding, Christine Woolley, Mark A. Hayes Analytical and Bioanalytical Chemistry 2017, 409, 6405-6414 DOI: 10.1007/s00216-017-0582-5 

Refinement of Insulator-based Dielectrophoresis. Claire V. Crowther and Mark A. Hayes* Analyst 2017, 142, 1608-1618 DOI: 10.1039/c6an02509a. article 

Concentration of Sindbis Virus with Optimized Gradient Insulator-based Dielectrophoresis. Jie Ding, Robert Lawrence, Paul V. Jones, Brenda G. Hogue, and Mark A. Hayes* Analyst 2016, 141, 1997-2008 DOI: 10.1039/C5AN02430G. article 

Biophysical Separation of Staphylococcus epidermidis Strains Based on Antibiotic Resistance. Paul V. Jones, Shannon H. Hilton, Paige Davis, Ryan McLemore, Alex McLaren, Ryan Yanashima, and Mark A. Hayes*Analyst 2015, 140, 5152-5161. DOI: 10.1039/C5AN00906E. article 

Development of the Resolution Theory for Gradient insulator-based Dielectrophoresis. Mark A. Hayes & Paul V. Jones Electrophoresis 2015, 36(9-10), 1098-1106 pub online 5-5-2015, DOI: 10.1002/elps.201400504. preprint 

Differentiation of Escherichia coli Serotypes Using DC Gradient Insulator Dielectrophoresis. Paul V. Jones, Alexa F. DeMichele, LaKeta Kemp, and Mark A. Hayes Anal. Bioanal. 2014, 406(1), 183-192 DOI: 10.1007/s00216-013-7437-5. article

Manipulation and capture of Aß amyloid fibrils and monomers by DC insulator gradient dielectrophoresis (DC-iGDEP), Sarah J. R. Staton, Paul V. Jones, Ginger Ku, S. Douglass Gilman, Indu Kheterpal, and Mark A. Hayes* Analyst, 2012, 137(14), 3227-3229 DOI:10.1039/C2AN35138B. article 

Blood cell capture in a gradient dielectrophoretic microchannel. Paul V. Jones, Sarah J. R. Staton, and Mark A. Hayes* Anal. Bioanal. 2011, 401, 2103-2111, PMID: 21830138. article 

Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device. Sarah J. R. Staton, Kang Ping Chen, Thomas J. Taylor, Jose Rafael Pacheco, & Mark A. Hayes*. Electrophoresis 2010, 31, 3634-3641, doi 10.1002/epls.201000438. article 

Insulator-based dielectrophoretic separation of small particles in a sawtooth channel. Kang Pang Chen* J. R. Pacheco, M. A. Hayes, S. J. R. Staton Electrophoresis 2009, 30, 1441-1448. article 

Electrophoretic and Dielectrophoretic field gradient techniques for separation bioparticles. Michele D. Pysher, Mark A. Hayes* Anal. Chem. 2007, 79, 4552-4557. article 


Future Directions 

Apply to full range of bioparticulates. Current work is blood cells and proteins, amyloid fibrils, virus particles, bioaerosols, and bacteria.