Berikut adalah beberapa algoritma supervised learning yang penting Anda ketahui, dan akan dibahas di kelas Belajar Machine Learning untuk Pemula:
Linear Regression
Logistic Regression
Classification
Decision Trees
Support Vector Machines
Neural Networks.
from google.colab import files
uploaded = files.upload()
import pandas as pd
Membaca file iris.csv
iris = pd.read_csv('Iris.csv')
import pandas as pd
import io
df = pd.read_csv(io.BytesIO(uploaded['YOUR_FILE_NAME.csv']))
print(df)
Beberapa algoritma unsupervised learning yang penting untuk Anda ketahui adalah: clustering, dimensionality reduction, anomaly detection, dan density estimation.
Sklearn K-means Clustering.ipynb
https://colab.research.google.com/drive/1x9M1VsVnNGnUqdxkqJcYSpWUZVFlx7Sr?usp=sharing
Linear Discriminant Analysis
https://sebastianraschka.com/Articles/2014_python_lda.html
1.2. Linear and Quadratic Discriminant Analysis¶
https://scikit-learn.org/stable/modules/lda_qda.html
An illustrated introduction to the t-SNE algorithm
SKLearn PCA
Latihan SKLearn SVM untuk Klasifikasi
Latihan SKLearn SVR