Objetivos
O objetivo desse curso é fornecer aos estudantes as ferramentas matemáticas para o desenvolvimento de sistemas computacionais de reconhecimento de padrões e aprendizado de máquina.
Ementa
Notas de aula
Algumas notas de aula do curso podem ser encontradas em: Tópicos em Reconhecimento de Padrões
Bibliografia
Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification, 2nd Edition, Wiley-Interscience, 2000.
Andrew R. Webb, Keith D. Copsey, Statistical Pattern Recognition, 3rd Edition, Wiley, 2011.
Sergios Theodoridis, Konstantinos Koutroumbas, Pattern Recognition, 4th Edition, Academic Press, 2008.
Keinosuke Fukunaga, Introduction to Statistical Pattern Recognition, 2nd Edition, Academic Press, 2013.
Geoff Dougherty, Pattern Recognition and Classification: An Introduction, Springer, 2013.
Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition, Springer, 2016.
Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2011.
Jürgen Schürmann, Pattern Classification: A Unified View of Statistical and Neural Approaches, 1st Edition, Wiley-Interscience, 1996.
Rodrigo Fernandes de Mello, Moacir Antonelli Ponti, Machine Learning: A Practical Approach on the Statistical Learning Theory, Springer, 2018.