Organizers: Richard J. Furnstahl, Hans-Werner Hammer, Achim Schwenk
Effective Field Theories (EFTs) applied to nuclei and nuclear matter have had many phenomenological successes. In particular, nuclear interactions derived from chiral EFT and advances in nuclear many-body techniques have enabled rapid progress in ab initio nuclear structure calculations up to mass numbers A ~ 100. However, the limits in mass and density of this approach are currently not known and there are open issues regarding the convergence and power counting of chiral EFT. Alternative lower-resolution EFTs have shown advantages for particular aspects of nuclear structure and reactions while EFT for energy-density functionals has many open questions. In the meantime, quantitative matching of QCD to nuclear EFT is becoming increasingly feasible. We are thus at a point where it is important to identify the priorities in moving forward in low-energy nuclear theory, i.e., at the "crossroads," particularly with respect to the role of effective field theory (EFT).
This 5-week program provided a meeting place for different approaches to nuclear structure with the goal of addressing open issues and priorities for future research. The program was divided into two topical blocks:
The vigorous discussions centered around a number of key questions:
The program identified important future calculations and paths forward. In addition, there was large consensus that uncertainty quantification for theory is essential and should be included in any future EFT calculation. We anticipate that the program has helped to focus the efforts in nuclear structure calculations using EFT and reevaluate the priorities in the field.