Prior to this work, successful rewarming of vitrified tissues could only be achieved with convective warming of small volumes on the order of 1 ml. We present a scalable nanowarming technology for 1- to 80-ml vitrified samples using radiofrequency-excited mesoporous silica–coated iron oxide nanoparticles in VS55. This allowed uniform and rapid rewarming in physical and biological systems, including human dermal fibroblast cells, porcine arteries and porcine aortic heart valve leaflet tissues. This data suggests that nanowarming can help improve vitrification of tissues in larger sample volumes.
Figure: Manuchehrabadi, N., Gao, Z., Zhang, J., Ring, H. L., Shao, Q., Liu, F., ... & Garwood, M. (2017). Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Science Translational Medicine, 9(379), eaah4586.
The first proof of concept demonstration of nanowarming in coral tissue. Daly, J., Bouwmeester, R.P., Page, C., Khosla, K., Kangas, J., Lager, C., Hardy, K., Bischof, J., Hagedorn, M. Advanced Sustainable Systems, 2023.
High and low subzero engineering approaches for organ preservation. Bischof, J.C. Cryobiology, 2022.
Vitrification and Nanowarming of Kidneys. Han, Z., Rao, J., Etheridge, M., Bischof, J., Finger, E. Cryobiology, 2022.
Vitrification and Rewarming of Magnetic Nanoparticle‐Loaded Rat Hearts, Gao, Z., Namsrai, B., Han, Z., Joshi, P., Rao, J. S., Ravikumar, V., ... & Bischof, J. C. Advanced Materials Technologies, 2022.
Etheridge, M. L., Xu, Y., Rott, L., Choi, J., Glasmacher, B., & Bischof, J. C. (2014). RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology, 2(03), 229-242.
Zhang, J., Ring, H. L., Hurley, K. R., Shao, Q., Carlson, C. S., Idiyatullin, D., ... & Garwood, M. (2016). Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magnetic Resonance in Medicine.
CPA toxicity screening of cryoprotective solutions in rat hearts. Kraft, C.J., Namsrai, B., Tobolt, D. Etheridge, M., Finger, E., Bischof, J. Cryobiology, 2024.
Model-Guided Design and Optimization of CPA Perfusion Protocols for Whole Organ Cryopreservation. Han, Z., Rao, J., Ramesh, S., Hergesell, J., Namsrai, B., Etheridge, M., Finger, E., Bischof, J. Annals of Biomedical Engineering, 2023.
Physical Demonstration of Vitrification of Liter Scale CPA Systems and Characterization of 120KW RF Coil for Nanowarming of Liter Scale Systems. Gangwar, L., Han, Z., Hintz, M., Pasek-Allen, J., Etheridge, M., Goldstein, R., Bischof, J. Cryobiology, 2022.
Supplemented phase diagrams for vitrification CPA cocktails: DP6, VS55 and M22, Han, Z., Gangwar, L., Magnuson, E., Etheridge, M. L., Pringle, C. O., Bischof, J. C., & Choi, J. Cryobiology, 2022.
On Chip Sorting of Stem Cell-Derived β Cell Clusters Using Traveling Surface Acoustic Waves. Langmuir. Published online February 6, 2024. Sethia N, Rao JS, Khashim Z, Schornack AMR, Etheridge ML, Peterson QP, Finger EB, Bischof JC, Dutcher CS.
Pancreatic islet cryopreservation by vitrification achieves high viability, function, recovery and clinical scalability for transplantation. Zhan, L., Rao, J. S., Sethia, N., Slama, M. Q., Han, Z., Tobolt, D., ... & Finger, E. B. , Nature Medicine, 2022.
Biological Characterization of Vitrified Pancreatic Islets and Transplantation. Rao, J., Zhan, L., Sethia, N., Slama, M., Han, Z., Tobolt, D., Etheridge, M., Peterson, Q., Dutcher, C., Bischof, J., Finger, E. Cryobiology, 2022.