project definition phi'(x/µ) = ϕ'(x/µ) = ?
hypothesis:
ϕ(x/µ) = e^(-n*((ln(x/µ))/(ln(σd))²
σ(ϕ) = x(ϕ;n)/µ = σd^±√(-ln(ϕ)/n) = x/µ
x/µ = σd^±√(-ln(ϕ)/n)
x = µ*σd^±√(-ln(ϕ)/n)
x(ϕ;σd;µ;n) = µ*σd^±√(-ln(ϕ)/n)
probability density normal distribution phi'(x/µ) = ϕ'(x/µ)
ϕ'(x/µ) = abs(2n*e^(-n*(ln(x/µ)/ln(σd))²)*ln(x)/((ln(σd))^2/x)
test:
monte carlo simulation excel N = 10000
excel random generator probability factor normal distribution sigma zeta phi deisenroth
x(ϕ)/µ = ?
x(ϕ)/µ = σd^±√(-ln(ϕ)
= σd^(((GANZZAHL((EXP(LN((0,5+ZUFALLSZAHL())))))-0,5)*2)*((-LN(ZUFALLSZAHL()))^0,5)^(1^0,5))
probability factor phi deisenroth
ϕ(x/µ) = probability factor phi deisenroth
probatility factor sigma deisenroth
σ(ϕ) = probability factor sigma deisenroth = x(ϕ)/µ
probability factor normal distribution sigma zeta phi deisenroth
σ(ϕ;n) = σd^(±ζ(ϕ)/n^0,5) = x(ϕ;n)/µ
σ(ϕ;n)= σd^(±√((-ln(ϕ)/n))) = x(ϕ;n)/µ
ϕ(x;n) = e^(-n*((ln(x/µ))/(ln(σd))²)
x(ϕ;n) = µ∗σd^(±√((-ln(ϕ)/n)))
ϕ(σd;n) = e^(-n*((ln(x(ϕ;n)/µ))/(ln(σd))²)
ζ(ϕ) = ±√(-ln(ϕ))
ζ(ϕ;n) = ±√(-ln(ϕ)/n)
true arithmetic mean (µari) and true geometric mean (µgeo or µ)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)