streufaktor normalverteilung ϕ(x/µ) = phi(x/µ) deisenroth und simulation kumulatives wahrscheinlichkeitsprodukt ϕcp(x1*x2) und streufaktorprodukt σcp(ϕcp)
phi kumulativprodukt normalverteilung = ϕcp(xgeo/µgeo*sd^+1 > 1) = ϕ(σcp)^n = (2/3)^n = phi cumulative product normal distribution
streufaktor normalverteilung sigma(phi) = σ(ϕ) = σ^±√(-ln(ϕ)) = x(ϕ)/µ & wahrscheinlichkeitsfaktor normalverteilung phi(x) = ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²) analyse & monte carlo simulation kumulative wahrscheinlichkeit ϕc(x) = 0,5*ϕ(x) & wahrer standard streufaktor σ = e^(2∗ln(µari/µgeo))^0¸5 = e^(2∗ln(µari/µ))^0¸5 & geschätzter standard streufaktor sd = e^(2∗ln(xari/xgeo))^0¸5 & phi faktor normalverteilung deisenroth
unterseiten:
faktor normalverteilung ϕ(x) = phi(x) deisenroth
streufaktor = x/µ = σ(x/µ) = σ^±√(-ln(ϕ)/n) = streufaktor x/µ = streufaktor(x/µ) = µ streufaktor
phi verteilung = phi(x/µ;sigma;n) = ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
project definition phi'(x/µ) = ϕ'(x/µ) = ?
standardstreufaktor sigma deisenroth σ = σd
(= standardfaktor = grenzfaktor = standardgrenzfaktor = normalfaktor = standardnormalfaktor = standardnormalgrenzfaktor)
σ = σd = e^(2*ln(µari/µgeo))^0,5 = wahrer standardstreufaktor sigma deisenroth
true arithmetic mean (µari) and true geometric mean (µgeo or µ)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
µari = µgeo*e^(0,5*ln(σd)^2)
µgeo = µari/e^(0,5*ln(σd)^2) ≠ µari for phi factor and phi density normal distribution
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd;xari) = xari/e^(0,5*ln(sd)^2)
xari(xi;n) = 1/n*(x1+x2+ ....+xn)
xari(sd;xgeo) = xgeo*e^(0,5*ln(sd)^2)
true standard scattering probability limit factor sigma deisenroth σd and estimated standard scattering probability limit factor sigma deisenroth sd
σd = e(2*ln(µari/µgeo))^0,5 = wahrer standardstreufaktor sigma deisenroth = σ
sd = e(2*ln(xari/xgeo))^0,5 = geschätzter standardstreufaktor sigma deisenroth = s
sigma zeta phi diagram deisenroth = ϕ(ζ;n)=e^-(ζ^2/n); ζ=±√(-ln(ϕ)/n)=ln(x/µ)/ln(σ)/√n
probability factor function normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^±ζd(ϕd;n) = σd^±√(-ln(ϕd/n) = x(ϕd;n)/µgeo ; σd=1,01 and cumulative factor function deisenroth
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^±ζd(ϕd;n)= σd^±√(-ln(ϕd)/n) = x(ϕd;n)/µgeo ; σd=1,01 and monte carlo simulation xgeo(n=1)
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^(±ζd(ϕd)/n^0,5) = σd^(±√(-ln(ϕd))) = x(ϕd;n)/µgeo ; σd=1,01
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^(±ζd(ϕd)/n^0,5) = σd^(±√(-ln(ϕd))) = x(ϕd;n)/µgeo ; σd=2
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^(±ζd(ϕd)/n^0,5) = σd^(±√(-ln(ϕd))) = x(ϕd;n)/µgeo ; σd=1,01 and monte carlo simulation n=56
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^(±ζd(ϕd)/n^0,5) = σd^(±√(-ln(ϕd))) = x(ϕd;n)/µgeo ; σd=2 and monte carlo simulation n=56
probability limit factor normal distribution sigma zeta phi deisenroth = σd(ϕd;n) = σd^(±ζd(ϕd)/n^0,5) = σd^(±√(-ln(ϕd))) = x(ϕd;n)/µgeo ; σd=1,01 and monte carlo simulation xgeo(n=2)
probability factor function sigma zeta phi deisenroth
ϕd(x;n) = e^(-n*((ln(x/µgeo))/(ln(σd))²)
x(ϕd;n) = µgeo ∗ σd^(±√((-ln(ϕd)/n)))
standard scattering factor (Standard Streufaktor)
σd = e^(2∗ln(µari/µgeo))^0¸5 = true standard scattering factor sigma deisenroth (wahrer Standard Streufaktor)
sd = e^(2∗ln(xari/xgeo))^0¸5 = estimated standard scattering factor sigma deisenroth (geschätzter Standard Streufaktor)
σari = µari/µgeo = e^(0,5∗(ln σd)^² ) = true µari scattering factor (wahrer µari Streufaktor)
sari = xari/xgeo = e^(0,5∗(ln sd)^²) = estimated xari scattering factor (geschätzter xari Steufaktor)
σ(ϕ) = σ^±√(-ln(ϕ)) = x(ϕ)/µ = sigma(phi)
σc(ϕ) = σ^±√(-ln(2*ϕ)) = x(ϕc)/µ = kumulativer streufaktor = cumulative scattering factor = sigma cum
σcp(n) = (x1/µ*x2/µ...*xn/µ) = σ(x1/µ)*σ(x2/µ)...= x1/µ*x2/µ^2=xgeo^2/µ^2 = σcp(n) kumulativ streufaktorprodukt = σcp(n) = cumulative scattering factor product = sigma cum product
σcp(n)^(1/n) = σcp(xgeo/µ) = xgeo/µ = xgeo streufaktorprodukt = xgeo scattering factor product
σgeo = µgeo/µgeo = 1 = true µgeo scattering factor (wahrer µgeo Streufaktor)
sgeo = xgeo/xgeo = 1 = estimated xgeo scattering factor (geschätzter xgeo Streufaktor)
σxgeo = xgeo/µgeo = true xgeo scattering factor (wahrer xgeo Streufaktor)
σµgeo(n,%) = µgeo(n,%)/µgeo(100%) = true µgeo scattering factor (wahrer µgeo Streufaktor)
σxgeo(n,%) = xgeo(n,%)/xgeo(100%) = true xgeo scattering factor (wahrer xgeo Streufaktor)
wahrscheinlichkeit phi, phi cum; phi cum product
ϕ = phi = wahrscheinlichkeit = probability
ϕc = phi cum = kumulativ wahrscheinlichkeit = cumulative probability
ϕcp = phi cum product = kumulativ wahrscheinlichkeit produkt = wahrscheinlichkeitsprodukt = phi cumulative product
vertrauensgrenzfaktor sigma(phi;n) deisenroth = σ(ϕ;n)
σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = xgeo(ϕ;n)/µ
standard limit factor sigma deisenroth
confidence limit factor sigma deisenroth
confidence limit exponent zeta deisenroth
probaility limit phi deisenroth
probability limit exponent zeta deisenroth
scattering factor analysis deisenroth
scattering factor limit analysis deisenroth
µari = TRUE ARIMEAN (WAHRES ARIMITTEL)
µgeo = TRUE GEOMEAN (WAHRES GEOMITTEL)
xari = ESTIMATED ARIMEAN (GESCHÄTZES ARIMITTEL)
xgeo = ESTIMATED GEOMEAN (GESCHÄTZTES GEOMITTEL)
xgeo(xi) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(sd) = xari/e^(0,5*ln(sd)^2)
σd (sd) = standard scattering factor sigma Deisenroth
σd (sd) = Standardstreufaktor sigma Deisenroth
σd =TRUE SCATTERING FACTOR SIGMA DEISENROTH (WAHRER STANDARDSTREUFAKTOR DEISENROTH)
sd =ESTIMATED SCATTERING FACTOR SIGMA DEISENROTH (GSCHÄTZTER STANDARDSTREUFAKTOR DEISENROTH)
scattering factor analysis (Streufaktoranalyse)
Study scattering factor noise Deisenroth (Untersuchung Streufaktor Lärm Deisenroth)
Confidence limit factor sigma deisenroth
σdij = σdi^(ζdij/ni^0,5) = true confidence limit factor sigma deisenroth ij
σdi(n,%) = σdi^(ζd/ni^0,5) = true confidence limit factor sigma deisenroth i
ζdij = ln(xgeoj/xgeoi)/(ln(σdi)/√ni + ln(σdj)/√nj) = true confidence limit exponent zeta deisenroth ij
xgeoi = estimated geomean i
σdi = true standard scattering factor simga deisenroth i
sdi = estimated standard scattering factor simga deisenroth i
probability phi deisenroth
ϕd(ζd) = e^-ζd² = true probability phi deisenroth
Pd(Zd) = e^-Zd² = estimated probability phi deisenroth
probability limit phi deisenroth
ϕdij(ζdij) = e^-ζdij² = true probability limit phi deisenroth
Pdij(Zdij) = e^-Zdij² = estimated probability limit phi deisenroth
probability exponent zeta deisenroth
ζd(ϕd) = ±√(-ln(ϕd)) = true probablitiy exponent zeta deisenroth
Zd(Pd) = ±√(-ln(Pd))= estimated probablitiy exponent zeta deisenroth
probability limit exponent zeta deisenroth
ζdij(ϕdij) = ±√(-ln(ϕdij))= true probablitiy limit exponent zeta deisenroth
Zdij(Pdij) = ±√(-ln(Pdij))= estimated probablitiy limit exponent zeta deisenroth
Impressum phi factor normal distribution ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
probability factor phi(x/µ;sigma;n) deisenroth = ϕ(x/µ;σ;n)
ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
probability factor sigma(phi;n) deisenroth = σ(ϕ;n)
σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ)/µ
x(ϕ;n) = µ∗σ^±√(-ln(ϕ)/n)
probability factor phi(n) deisenroth = ϕ(n)
ϕ(n) = ϕ^n
standard factor sigma deisenroth σ and s (standardfaktor sigma deisenroth)
σ = e^(2*ln(µari/µgeo))^0,5 = true standard factor sigma (wahrer standardfaktor sigma deisenroth) = σd
s = e^(2*ln(xari/xgeo))^0,5 = estimated standard factor sigma (geschätzter standardfaktor sigma deisenroth) = sd
true arithmetic mean (µari) and true geometric mean (µgeo or µ)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
µari = µgeo*e^(0,5*ln(σ)^2)
µgeo = µari/e^(0,5*ln(σ)^2)
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(s;xari) = xari/e^(0,5*ln(s)^2)
xari(xi;n) = 1/n*(x1+x2+ ....+xn)
xari(s;xgeo) = xgeo*e^(0,5*ln(s)^2)
phi faktor normalverteilung ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
phi faktor normalverteilung ϕd(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi factor normal distribution ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
phi factor normal distribution ϕd(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi cumulative factor distribution function = ϕc = 0,5*ϕd(x/µ;σd;n)
cumulative probability limit factor distribution function phi-cum deisenroth = ϕc(x/µ;σd;n) = 1/2*ϕd(x/µ;σc;n) and sigma-cum deisenroth = σc(ϕc;n) = σd^(±√(-ln(2*ϕc)/n))
sigma zeta phi diagramm deisenroth = ϕ(ζ;n)=e^-(ζ^2/n); ζ=±√(-ln(ϕ)/n)=ln(x/µ)/ln(σ)/√n
Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.