Frank Deisenroth
Seligenstädter Weg 4
63796 Kahl am Main
Tel.: 0179 / 110 3096
© Frank Deisenroth, Alle Rechte vorbehalten.
phi faktor normalverteilung ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σd))²)
probability factor normal distribution deisenroth phi(x)
phi faktor normalverteilung ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
phi factor normal distribution ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
phi factor normal distribution ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
phi cum faktor normalverteilung deisenroth = ϕc = 0,5*ϕ(x/µ;σ;n)= 0,5*e^(-n*(ln(x/µ)/ln(σ))²) = 0,5*ϕd(x/µ;σd;n)
phi cum factor normal distribution deisenroth = ϕc = 0,5*ϕ(x/µ;σ;n)= 0,5*e^(-n*(ln(x/µ)/ln(σ))²) = 0,5*ϕd(x/µ;σd;n)
phi cum faktor produkt normalverteilung deisenroth = ϕcp;n = ϕcn
phi cum factor product normal distribution deisenroth = ϕcp;n = ϕcn
Impressum phi factor normal distribution ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
probability factor phi(x/µ;sigma;n) deisenroth = ϕ(x/µ;σ;n)
ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
probability factor sigma(phi;n) deisenroth = σ(ϕ;n)
σ(ϕ;n) = σ^±√(-ln(ϕ)/n) = x(ϕ)/µ
x(ϕ;n) = µ∗σ^±√(-ln(ϕ)/n)
probability factor phi(n) deisenroth = ϕ(n)
ϕ(n) = ϕ^n
standard normal factor sigma deisenroth σ and s (standard normal faktor sigma deisenroth)
σ = e^(2*ln(µari/µgeo))^0,5 = true standard normal factor sigma (wahrer standard normal faktor sigma deisenroth = standardfaktor = normalfaktor = standardnormalfaktor) = σd
s = e^(2*ln(xari/xgeo))^0,5 = estimated standard normal factor sigma (geschätzter standard normal faktor sigma deisenroth = standardfaktor = normalfaktor = standardnormalfaktor) = sd
true arithmetic mean (µari) and true geometric mean (µgeo or µ)
µari = true arithmetic mean (wahrer arithmetischer mittelwert)
µgeo = true geometric mean (wahrer geometrischer mittelwert)
µari = µgeo*e^(0,5*ln(σ)^2)
µgeo = µari/e^(0,5*ln(σ)^2)
estimated arithmetic mean (xari) and estimated geometric mean (xgeo)
xari = estimated arithmetic mean (geschätzter arithmetischer mittelwert)
xgeo = estimeted geometric mean (geschätzter geometrischer mittelwert)
xgeo(xi;n) = e^(1/n*((ln(x1)+ln(x2)+.....+ln(xn)))
xgeo(s;xari) = xari/e^(0,5*ln(s)^2)
xari(xi;n) = 1/n*(x1+x2+ ....+xn)
xari(s;xgeo) = xgeo*e^(0,5*ln(s)^2)
phi faktor normalverteilung ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
phi faktor normalverteilung ϕd(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi factor normal distribution ϕ(x/µ;σ;n) = e^(-n*(ln(x/µ)/ln(σ))²)
phi factor normal distribution ϕd(x/µ;σd;n) = e^(-n*(ln(x/µ)/ln(σd))²)
phi cumulative factor distribution function = ϕc = 0,5*ϕd(x/µ;σd;n)
cumulative probability limit factor distribution function phi-cum deisenroth = ϕc(x/µ;σd;n) = 1/2*ϕd(x/µ;σc;n) and sigma-cum deisenroth = σc(ϕc;n) = σd^(±√(-ln(2*ϕc)/n))