International Journal (ResearcherID) (ORCID) #: Co-First Author, *Corresponding Author (2026)[92] Heo, Y.B., Ko, S.C., Keasling, J.D., *Woo, H.M. (2026.xx)Techno-economic assessment-guided biofoundry for microbial strain development Trends Biotechnol. (original research) (IF=14.9) [Link-Cell Link] [한빛사] [YouTube] (JCR Top 1.4% in BIOTECHNOLOGY & APPLIED MICROBIOLOGY) (2025)[91] #Heo, Y.B., #Park, J.S., *Woo, H.M. (2025.12)Architectures of emerging biofoundry platforms for synthetic biology.Curr. Opin. Biotechnol. 96:103379 (IF=7.0) [Link] (JCR Top 4.1 % in BIOCHEMICAL RESEARCH METHODS) -[Special issue][90] Son, J.G., Lee, H.J., *Woo, H.M. (2025.03)CRISPRi-assisted metabolic engineering of cyanobacteria for photosynthetic hyaluronic acid from CO2. J. Biol. Eng. 19:26 1-12. (IF=6.5) [Link] (JCR Top 6.2 % in BIOCHEMICAL RESEARCH METHODS)[89] Lee, H.J., Kim, C., Heo, Y.B., Kim, S.-E., *Woo, H.M. (2025.03)Bacterial biosynthesis of abietane-type diterpene ferruginol from glucose. Microb. Cell Fact. 24:76 1-13 (IF=4.9) [Link] (JCR Top 15.5% in BIOTECHNOLOGY & APPLIED MICROBIOLOGY) (2024)[88] *Woo, H.M., Keasling, J.D. (2024.09) Measuring the economic efficiency of laboratory automation in biotechnologyTrends Biotechnol. 42(9) 1076-1080 (IF=17.3) [Link] [한빛사] [YouTube] (JCR Top 1.6% in BIOTECHNOLOGY & APPLIED MICROBIOLOGY)[87] Ko, S.C., *Woo, H.M. (2024.01)CRISPR-dCas13a system for programmable small RNAs and polycistronic mRNA repressions in bacteria Nucleic Acids Res. 52(1) 492-506 (IF=16.6) [Link] [한빛사] (JCR Top 1.8% in BIOCHEMISTRY & MOLECULAR BIOLOGY) (2023)[86] Hwangbo, H., Lee, H., Jin, E.-J., Jo, Y., Son, J., *Woo, H.M., *Ryu, D., *Kim, G.H (2023.03)Photosynthetic cyanobacteria can clearly induce efficient muscle tissue regeneration of bioprinted cell-constructsAdv. Funct. Mater. 33(10) 2209157 1-19 (IF=19.924) [Link] [한빛사] (JCR Top 4.78% in MATERIALS SCIENCE, MULTIDISCIPLINARY)[85] Lee, M., Heo, Y.B., *Woo, H.M.,, (2023.02).Cytosine base editing in cyanobacteria by repressing archaic Type-IV uracil-DNA glycosylaseThe Plant J. 113(3) 610-625 (IF=7.091) [Link] [한빛사] (JCR Top 6.9% in Plant Sciences) (2022)[84] #Heo, Y.B., #Hwang, G., Kang, S.W., *Bae S., *Woo, H.M. (2022.12)High-fidelity cytosine base editing in Corynebacterium glutamicum with reduced DNA off-target editing effects Microbiol. Spectr. 10(6) 1-17 e03760-22 (IF=9.043) [Link] (JCR Top 14.33 % in Microbiology)[83] Park, J.H., *Woo, H.M., (2022.11)Co-production of l-Lysine and Heterologous Squalene in CRISPR/dCas9-Assisted Corynebacterium glutamicumJ. Agric. Food Chem. 70(46) 14755 -14760 (IF=5.895) [Link] [Correction](JCR Top 9.32% in Agriculture, Multidisciplinary)[82] Ko, S.C., Cho, M., Lee, H.J., *Woo, H.M. (2022.10)Biofoundry Palette: Planning-assistant software for liquid handler-based experimentation and operation in the biofoundry workflowACS Synth. Biol. 11, 10, 3538-3543 (IF=5.249) [Link] (JCR Top 11.69 % in Biochemical Res. Methods)[81] #Kim, D.J., #Lee, J., Lee, D.H., Lee, J., *Woo, H.M. (2022.05)DeepTESR: a deep learning framework to predict the degree of translational elongation short ramp for gene expression controlACS Synth. Biol. 11, 5, 1719-1726 (IF=5.249) [Link] (JCR Top 11.69 % in Biochemical Res. Methods)[80] Kang, D. H., Ko, S. C., Heo, Y. B., Lee, H. J., *Woo, H.M. (2022.03)RoboMoClo: A robotics-assisted modular cloning framework for multiple gene assembly in biofoundryACS Synth. Biol. 11, 3, 1336-1348 (IF=5.249) [Link] (JCR Top 11.69 % in Biochemical Res. Methods) (2021)[-] Lindblad, P., Lui, X., Woo, H.M. (2021.12).Green cell factories for sustainable CO2-neutral chemical and fuel productionMicrobiologist magazine, Sfam 20(42) 20-22 [Link] [79] Park, J.H., Kang, D.H., *Woo, H.M. (2021.10). Microbial bioprocess for extracellular squalene production and formulation of nanoemulsions ACS Sustain. Chem. Eng. 9(42) 14263-14276 [Link] (IF=9.224) (JCR Top 8.80% in Engineering, Chemical)[78] Lee, Y., Cho, H., Choi, J.-i., *Woo, H.M. (2021.09). Hybrid Embden–Meyerhof–Parnas pathway for reducing CO2 loss and increasing the acetyl-CoA levels during microbial fermentation ACS Sustain. Chem. Eng. 9(36), 12394-12405 [Link] (IF=9.224) (JCR Top 8.80% in Engineering, Chemical)[77] *Choi, S.Y. and *Woo, H.M. (2021.09).Evaluation of photosynthetic squalene production of engineered cyanobacteria using the chemical inducer-free expression systemMicrobiol. Biotechnol. Lett. 49(3) 298-304 [Link][76] Roh, H., Lee, J.S., Choi, H.I., Sung, Y.J., Choi, S.Y., Woo, H.M., *Sim, S.J. (2021.05)Improved CO2-derived polyhdroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gasBioresour. Technol. 327, 124789 [Link] (IF=11.889)[75] Lee, H.J., Choi, J.I., *Woo, H.M. (2021.01).Biocontainment of engineered Synechococcus elongatus PCC 7942 for photosynthetic production of α-farnesene from CO2J. Agric. Food Chem. 69, 2, 698-703 [Link] (IF=5.895) (JCR Top 9.32% in Agriculture, Multidisciplinary) (2020)[74] Napisa, M., Choi, J.-I., Incharoensakdi, A., *Woo, H.M. (2020.12).Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and UtilizationBiotechnol. Bioproc. Eng. 25, 6, 829-847 (IF=2.213) [Link])[73] Lee, M., *Woo, H.M. (2020.12)A logic NAND gate for controlling gene expression in a circadian rhythm in cyanobacteriaACS Synth. Biol. 9, 3210-3216 (IF=4.411) [Link] (JCR Top 14.26 % in Biochemical Res. Methods)[72] Ko, S.C., **Woo, H.M. (2020.11) Biosynthesis of the calorie-free sweetener precursor, ent-kaurenoic acid from CO2 using engineered cyanobacteriaACS Synth. Biol. 9, 11, 2979–2985 (IF=4.411) [Link] (JCR Top 14.26 % in Biochemical Res. Methods)[71] Lim, H.B., Park, J.H., *Woo, H.M. (2020.09)Overexpression of the key enzymes in the methylerythritol-4-phosphate pathway in Corynebacterium glutamicum for improving farnesyl diphosphate-derived terpene production. J. Agric. Food Chem. 68:39, 10780-10786. [Link] (IF=4.192) (JCR Top 6.90% in Agriculture, Multidisciplinary)[70] #Choi, S.Y., #Sim, S.J., Ko, S.C., Son, J., Lee, J.S., Chang, W.S., *Woo, H.M. (2020.09)Scalable cultivation of engineered cyanobacteria for squalene production from industrial flue gas in a closed photobioreactor. J. Agric. Food Chem. 68, 10050-10055 [Link] (IF=4.192) (JCR Top 6.90% in Agriculture, Multidisciplinary)[69] #Napisa, M., #Lee, M., Incharoensakdi, A., *Woo, H.M. (2020.10). Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteriaEnzyme Microbial. Technol. 140:109619 [Link] (IF=3.553) (JCR Top 27.26% in Biotechnol. Appl. Microbiol.)[68] Choi, S.Y., *Woo, H.M., (2020.09). CRISPRi-dCas12a: A dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteriaACS Synth. Biol. 9, 9, 2351-2361 (IF=4.411) [Link] (JCR Top 14.26 % in Biochemical Res. Methods)[67] Lee, H.J., Son, J., Sim, S.J., *Woo, H.M. (2020.09).Metabolic rewiring of synthetic pyruvate dehydrogenase bypasses facilitates high-level photosynthetic acetone biosynthesis from CO2 in cyanobacteriaPlant Biotechnol. J. 18(9) 1860-1868 (IF=8.15) [Link] (JCR Top 3.9% in Plant Sciences)[성균관대학교 뉴스] [중앙일보-일간지] [중앙일보] [베리타스] [대학저널] [교수신문] [브릭] [66] Lee, S.S., Park, J.H., Heo, Y.B., *Woo, H.M. (2020.01).Case study of xylose conversion to glycolate in Corynebacterium glutamicum: Current limitation and future perspective of the CRISPR-Cas systems,Enzyme Microbial. Technol. 132:109395 [Link] [Link2] (IF=3.553) (JCR Top 27.26% in Biotechnol. Appl. Microbiol.) (2019)[65] Lee, S.S., Choi. J.-I., *Woo, H.M., (2019.12)Bioconversion of xylose to ethylene glycol and glycolate in engineered Corynebacterium glutamicum, ACS Omega. 4(25), 21279-21287 [Link] (IF=2.58)[64] Napisa, M., Lee, H.J., Incharoensakdi, A., *Woo, H.M., (2019.12)Evolutionary engineering of Synechococcus elgonatus PCC 7942 for improving production -farnesene from CO2. J. Agric. Food Chem. 67(49), 13658-13664 [Link] (IF=3.571) (JCR Top 6.90% in Agriculture, Multidisciplinary)[63] Park, J., Riaz, A., Verma, D., Lee, H.J., Woo, H.M., *Kim, J. (2019.04). Fractionation of lignocellulosic biomass over core‐shell Ni‐alumina catalysts with formic acid as a co‐catalyst and hydrogen source,ChemSusChem. 12:1743-1762 [Link] (IF=7.411)[62] Yook, S.D., Kim, J., Woo, H.M., Um, Y., *Lee, S.M., (2019.03). Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents, Renewable Energy. 132:61-67 [Link] (IF=4.9)[61] Ko, S.C., Lee, H.J., Choi, S.Y., Choi. J.-I., *Woo, H.M. (2019.01). Bio-solar cell factories for photosynthetic isoprenoids production Planta. 249:181-193 [Link] (IF=3.249) (JCR Top 17.3% in Plant Sciences)[60] Park, J.H., Yu, B.J., Choi. J.-I., *Woo, H.M., (2019.01)Heterologous production of squalene from glucose in engineered Corynebacterium glutamicum using multiplex CRISPR interference and high-throughput fermentationJ. Agric. Food Sci. 67(1) 308-319 [Link] (IF=3.412) (2018)[59] Kim, D., *Woo, H.M. (2018.11).Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factoriesAppl. Microbiol. Biotechnol. 102(22)9471-9480 [Link] (IF=3.340)[58] #Ravikumar S., #Woo, H.M., *Choi , J.-I. (2018.11).Analysis of novel antioxidant sesquarterpenes (C35 terpenes) produced in recombinant Corynebacterium glutamicumAppl. Biochem. Biotechnol. 186(3):525-5834 [Link] (IF=1.751)[57] Yoon, J. and *Woo, H.M. (2018.08) CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production Biotechnol. Bioeng. 115(8):2067-2074 [Link] (IF=4.48)[56] #Lee, S.S., #Shin, H., Jo, S., Lee, S.M., Um, Y. and *Woo, H.M. (2018.07) Rapid identification of unknown carboxyl esterase activity in Corynebacterium glutamicum using RNA-guided CRISPR interference Enzyme Microb. Technol. 114:63-68 [Link] (IF=2.932)[55] Choi, S.Y., Sim, S.J., Choi. J.-I., *Woo, H.M. (2018.06)Identification of small droplets of squalene in engineered Synechococcus elongatus PCC 7942 using TEM and selective fluorescent Nile red analysisLett. Appl. Microbiol. 66:523-529 [Link] (IF=1.575)[54] Kim, E.S., Kim, B.S., Kim, K.Y., Woo, H.M., Lee, S.M., *Um, Y. (2018.02) Aerobic and anaerobic cellulose utilization by Paenibacillus sp. CAA11 and enhancement of its cellulolytic ability by expressing a heterologous endoglucanase J. Biotechnol. 268:21-27 [Link][53] Choi, Y.Y., Hong, M.E., Jin E.S., Woo, H.M., *Sim, S.J. (2018.02)Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas Bioresour. Technol. 249:519-526 [Link][52] *Woo, H.M. (2018.01) Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO2Bioengineered (IF=1.87) 9(1) 2-5 [Link][51] #Park, J.H., #Shin, H., Lee, S.M., Um, Y., *Woo, H.M. (2018.01) RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain Microb. Cell Fact. 17:4 [Link] (IF= 3.831) (2017)[50] Yoo, S.K., Joo, Y.C., Kang, D.H., Shin, S.K., Hyeon, J.E., Woo, H.M., Um, Y., Park, C., *Han, S.O. (2017.12)Enhancing fatty acid production of Saccharomyces cerevisiae as animal feed supplementJ. Agric. Food. Chem. 65 (50), pp 11029–11035 [Link][49] Lee, H.J., Lee, J., Lee, S.M., Um, Y., Sim, S.J., Choi. J.-I., *Woo, H.M. (2017.12)Direct conversion of CO2 to a-farnesene by metabolically engineered Synechococcus elongates PCC 7942J. Agric. Food. Chem. 65(48) 10424-10428 (IF=3.154) [Link] (Issue Cover & JCR ranking 3% journal, [Link])Media Link: [베리타스알파] [대학저널] [대덕넷-HelloDD][48] Kim, E.M., Woo, H.M.., Tian Tian, T., Yilmaz, S., Pouya Javidpour, P., Keasling, J.D., *Lee, T.S. (2017.11)Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered Escherichia coliMetab. Eng. 44:325-336 [Link][47] Min, K., Yum, T., Kim, J., Woo, H.M., Kim, Y., Sang, B.I., Yoo, Y.J., Kim, Y.H, *Um, Y. (2017.09)Perspective for lignin utilization: cleaving 4-O-5 and Cα-Cβ in dimeric model compounds catalyzed by promiscuous activity of tyrosinaseBiotechnol. Biofuel. 10:212 [Link][46] Gong, G., Kim, S., Lee, S.M., Woo, H.M., Park, T.H., *Um, Y. (2017.07)Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymesJ. Biotechnol. 254, 59-62 [Link][45] Gong, G., Lee, S.M., Woo, H.M, Park, T.H., *Um, Y. (2017.11)Influences of media compositions on characteristics of isolated bacteria exhibiting lignocellulolytic activities from various environmental sitesAppl. Biochem. Biotechnol. 183(3) 931-942 [Link][44] Choi, S.Y., Wang, J.Y., Kwak, H.S., Lee, S.M., Um, Y., Kim, Y., Sim, S.J., Choi. J.-I., *Woo, H.M. (2017.07)Improvement of squalene production from CO2 in Synechococcus elongatus PCC 7942 by metabolic engineering and scalable production in a photobioreactor ACS Synth. Biol. 6(7) p. 1289-1295 (IF=6.076) [Link][43] *Woo, H.M., Lee, H.J. (2017.05)Toward direct biodiesel production from CO2 using engineered cyanobacteria FEMS Microbiol. Lett. 364(9): fnx066 (IF=2.121) [Link][42] Jo, S., Yoon, J., Lee, S.M., Um, Y., Han, S.O., *Woo, H.M. (2017.09) Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production J. Biotechnol. 258:69-78 (IF=2.884) [Link] [Link](Special issues: On the occasion of the 40th anniversary of Biotechnology in Jülich)[41] *Woo, H.M. (2017.06)Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganismsCurr. Opin. Biotechnol. 45:1–7 (IF=9.294) [Link] (JCR ranking TOP 4% journal)Media Link: [뉴스1] [메일경제] [베리타스알파][40] Kim, T., Cho, S, Woo, H.M., Lee, S.M., Lee, J., *Um, Y., *Seo, J.H. (2017.04)High production of 2,3-butanediol from glycerol without 1,3-propanediol formation by Raoultella ornithinolytica B6 Appl. Microbiol. Biotechnol. 101:2821-2830. (IF=3.337) [Link][39] Kim, W.J, Lee, S.M., Um, Y., Sim, S.J., *Woo, H.M. (2017.03)Development of SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942Front. Plant Sci. 8:293 (IF=4.495) [Link] (JCR ranking TOP 7% journal) [38] Lee, H.J., Choi, J., Lee, S.M., Um, Y., Sim, S.J., Kim, Y., *Woo, H.M. (2017.02) Photosynthetic CO2 conversion to fatty acid ethyl esters (FAEEs) using engineered cyanobacteria. J. Agric. Food. Chem. 65(6) 1087-1092 (IF=3.154) [Link] (JCR ranking TOP 3% journal) (2016)[37] Youn, S.H., Kim, K.-Y., Lee, K.M., Lee, S.-M., Woo, H.M., *Um, Y., Effective Isopropanol-Butanol (IB) fermentation by a newly isolated Clostridium sp. A1424 (2016.10). Biotechnol. Biofuels. 9:230 1-15 (IF=6.44) [Link][36] Kim, T., Cho, S., Lee, S.M., Woo, H.M., Lee, J., *Um, Y., and *Seo, J.H., High Production of 2,3-Butanediol (2,3-BD) by Raoultella ornithinolytica B6 via Optimizing Fermentation Conditions and Overexpressing 2,3-BD Synthesis Genes. (2016.10) PLOS ONE 11(10): e0165076 (IF=3.057) [Link][35] Kim, M., Kim, K.Y., Lee, K.M., Youn, S.H., Lee, S.M., Woo, H.M., Oh, M.K., *Um, Y., Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity (2016.10) Bioresour. Technol. 218:1208-1214 (IF=4.49) [Link][34] Kwak, H.S., Kim, J., Woo, H.M., Jin, E.S., Min, B.K., Sim, S.J. Synergistic effect of multiple stress conditions for improving microalgal lipid production, (2016.09). Algal Res. 19: 215-224 (IF=5.014) [Link][33] #Choi, S.Y., #Lee, H.J., Choi, J., Kim, J., Sim, S.J., Um, Y., Kim, Y., Lee, T.S., Keasling, J., *Woo, H.M., Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria, (2016.09). Biotechnol. Biofuels. 9:202 (IF=6.44) [Link] (Collaboration with UC Berekeley)[32] #Choi, S.Y., #Park, B., Choi, I.G., Sim, S.J., Lee, S.M., Um, Y., *Woo, H.M., Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq (2016.08). Sci. Rep. 6:30584 (IF=5.578) [Link] (Collaboration with KU Bioinformaticians)[31] Chwa, J.W., Kim, W.J., Sim, S.J., Um, Y., *Woo, H.M., “Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition” (2016.08). Plant Biotechnol. J. 14: 1768-1776 (IF=6.09) [Link] (JCR Plant Science Top 5.2%)Media Link: [조선일보] [중앙일보] [동아일보] [YTN사이언스] [동아사이언스] [에너지경제] [연합뉴스] [아시아경제] [뉴스1] [중도일보] [금강일보] [대덕넷] [연구재단] [사이언스타임즈] [메일경제] [산업일보] [한국과학기술연구원언론홍보] [서울신문][30] Ko, J.K., Um, Y., Woo, H.M., Kim, K.H., *Lee, S.M., “Ethanol production from lignocellulosic hydrolysate using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway “(2016.06) Bioresour. Technol. 209:290-296 (IF=4.49) [Link][29] Choo, S., Um, Y., Han, S.O. and *Woo, H.M.,“Engineering of Corynebacterium glutamicum to utilize methyl acetate, a potential feedstock derived by carbonylation of methanol with CO” (2016.04). J. Biotechnol. 224:47-50 (IF=2.884) [Link][28] Kim, S, Gong, G, Woo, H.M., Kim, Y., *Um, Y.Burkholderia jirisanensis sp. nov. isolated from forest soil. (2016.03) Int. J. Syst. Evol. Microbiol.66: 1260-1267 (IF=2.51)[Link][27] Lee, J., Saddler, J., Um, Y., *Woo, H.M.Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose” (2016.01). Microb. Cell Fact. 15:20. (IF=4.22, JCR 13.58%) [Link] (Collaboration with UBC at Canada) (2015)[26] Kim, E.-M., Um, Y., Bott, M., *Woo, H.M., Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan as a pyrolytic sugar substrate. (2015.10) FEMS Microbiol. Lett. 360 (19) fnv161 (IF=1.858) [Link][25] Cho, S., Kim, T., Woo, H.M., Lee, J., Kim, Y., *Um, Y., Enhanced 2,3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase., (2015.9). PloS One. 10(9) e0138109. (IF=3.232) [Link][24] Cho, S., Kim, T., Woo, H.M., Lee, J., Kim, Y., *Um, Y., High production of 2,3-butanediol from biodiesel-derived glycerol by metabolically engineered Klebsiella oxytoca M1, (2015.09). Biotechnol Fuels. 8: 146. (IF=6.444) [Link][23] Lee, K., Choi, O., Kim, K.Y., Woo, H.M., Kim, Y., Han, S.O., Sang, B.I., *Um, Y., Butyric acid production from red algae by a newly isolated Clostridium sp. S1 (2015.9). Biotechnol. Lett. 37:1837-1844 (IF=1.591) [Link] [22] Oh, Y.H., Choi, J.W., Kim, E.Y., Song, B.K., Jeong, K.J., Park, K., Kim, I.K., Woo, H.M., Lee, S.H., *Park, S.J., Construction of Synthetic Promoter-Based Expression Cassettes for the Production of Cadaverine in Recombinant Corynebacterium glutamicum. (2015.8) Appl. Biochem. Biotechnol. 176:2065–2075 (IF=1.735) [Link][21] Lee, K., Min, K., Choi, O., Kim, K., Woo, H.M., Han, S.O., Kim, Y., *Um, Y., Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation (2015.07). Bioresour. Technol. 87, 228-234 (IF=5.039) [Link][20] Kim, E.-M. Eom, J.H., Kim, Y., Um, Y., *Woo, H.M., “Microbial synthesis of myrcene by metabolically-engineered Escherichia coli. (2015.05) J. Agric. Food Chem. 63(18), pp 4606–4612. (IF=3.107) [Link] (JCR ranking Top 3.51%)[19] Lee, K., Choi, O., Kim, T., Kim, K., Woo, H.M., Han, S.O., Sang, B.-I., *Um, Y., In situ detoxification of lignocellulosic hydrolysate using a surfactant for butyric acid production by Clostridium tyrobutyricum ATCC 25755 (2015). Proc. Biochem. (2015.04) 50:630-635 (IF=2.542) [Link][18] Park, H.-S., Um, Y., Sim, S.J., Lee, S.Y., *Woo, H.M., Transcriptomic analysis of Corynebacterium glutamicum in the response to the toxicity of furfural present in lignocellulosic hydrolysates (2015.03). Proc. Biochem. 50:347-356. (IF=2.542) [Link][17] Min, K., Gong, G., Woo, H.M., Kim, Y., *Um, Y., "A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer (2015.02). Sci. Rep. 5:8245 (IF=5.578) [Link][16] Gong, G., Um, Y., Park, T.H., *Woo, H.M., “Compete genome sequence of Enterobacter cloacae GGT036, a furfural degrading bacterium (2015.01). J. Biotechnol. 193:43-44. (IF=2.884) [Link][15] Choi, S.Y., Gong, G., Park, H.-S., Um, Y., Sim, S.J., *Woo, H.M., Extreme furfural tolerance of a soil bacterium Enterobacter cloacae GGT036 (2015.01). J. Biotechnol. 193:11-13 (IF=2.884) [Link] (2014)[14] Choi, O., Kim, T., Woo, H.M., *Um, Y., Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium (2014.11). Sci. Rep. 4:6961. (IF=5.078) [Link][13] Kang, M.-K.,Eom, J.-H., Kim,Y., Um, Y., *Woo, H.M., “Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum”, (2014.10). Biotechnol. Lett. 36:2069-2077 (IF=1.85) [Link][12] Lee, J., Sim, S.J., Bott, M., Um, Y., Oh, M.-K., *Woo, H.M., “Succinate production from CO2-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing”. (2014.7) Sci. Rep. 4:5819 (IF=5.078) [Link]Media Link: [YTN이브닝뉴스방송] [YTN사이언스방송] [YTN뉴스1 2] [KBS 뉴스] [한국경제_과학기술프런티어 지면] [문화일보] [문화일보_본지] [한겨례] [조선비즈] [경향신문] [연합뉴스] [디지털타임즈] [더코리아뉴스] [메일경제1 2 3] [뉴스핌] [뉴스1] [헤럴드경제] [헤럴드경제_본지] [아주경제] [파이넨셜뉴스] [이비뉴스EBN] [머니투데이] [중앙일보] [내일신문] [서울경제] [전자신문] [미래창조과학부보도자료 대한민국정책브리핑] [미래창조과학부블로그] [HelloDD] [KIST연구성과] [세계일보] [국민일보] [BRIC] [사이언스타임즈] International: [ArirangTV] [BusinessKorea] [PRW.com][11] #Kang, M.-K., #Lee, J., Um, Y., Lee, T.S., Bott, M., Park, S.J., *Woo, H.M., “Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization”, (2014.7). Appl. Microbiol. Biotechnol. 98:5991-6002 (IF=3.689) [Link][10] *Woo, H.M.. & Park. J.B., Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum, (2014.6) J. Biotechnol. 180:43-51 (IF=3.183) [Link] [Article usage](2005-2013)[9] #Lee, J., #Woo, H.M., Kong, G.,, Nam, S.J., Chung, B.C. “Discovery of Urinary Biomarkers in Patients with Brest Cancer Based on Metabolomics”, (2013.12). Mass Spec. Lett. 4:59-66. [Link] [8] Woo, H.M., Murray, G.W., Batth, T.S., Prasad, N., Adams, P.D., Keasling, J., Petzold, C., *Lee, T.S. “Application of targeted proteomics and biological parts assembly in E. coli to optimize the biosynthesis of an anti-malarial drug precursor, amorpha-4,11-diene”, (2013.11). Chem. Eng. Sci. 103:21-28 (IF=2.4) [Link] [7] Go, A.R., Ko, J.W., Lee, S.J., Kim, S.W., Han, S.O., Lee, J., Woo, H.M., Um, Y., Nam, J., and *Park, C. “Process Design and Evaluation of Value-added Chemicals Production from Biomass”, (2012.10). Biotechnol. Bioproc. Eng. 17:1055-1061. (SCIE, IF 1.278) [Link][6] Woo, H.M., Noack, S., Seibold, G., Willbold, S., Eikmanns, B., and Bott, M. “Link between glycogen pathway and phosphate starvation response of Corynebacterium glutamicum, revealed by metabolomics, (2010.10). Appl. Environ. Microbiol. 76(20):6910-6919. (IF=3.778) [Link] [5] Choi, H.S., *Lee, S.Y., Kim, T.Y., and Woo, H.M. “in silico identification of gene amplification targets for improving lycopene production”, (2010.5) Appl. Environ. Microbiol. 76: 3097-3105. (IF=3.778) [Link] [4] Woo, H.M., Kim, K.M., Choi, M.H., Jung, B.H., Lee, J., Kong, G., Nam, S.J., Kim, S., Bai, S.W. and *Chung, B.C. “Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers”, (2009.2) Clinica Chimica Acta 400: 63-69. (IF=2.388) [Link][3] #Lee, S.H., #Woo, H.M., Jung, B.H., Lee, J., Kwon, O.S., Pyo, H.S., Choi, M.H. and *Chung, B.C. “Metabolomic approach to evaluate the toxicological effects of nonylphenol with rat urine”, (2007.8) Anal. Chem. 79:6102-6110. (IF=5.874) [Link][2] Kim, J.S., Yun, H., Kim, H.U., Choi, H.S., Kim, T.Y., Woo, H.M., and *Lee, S.Y. “Resources for systems biology research", (2006.6) J. Microbiol. Biotechnol.16:832-848. (IF=1.224) [Link] [1] *Lee, S.Y., Woo, H.M., Lee, D.-Y, Choi, H.S, Kim, T.Y. and Yoon H. “Systems-Level Analysis of Genome-Scale Microbial Metabolisms under the Integrated Software Environment”, (2005.10) Biotechnol. Bioproc. Eng. 10:425-431. (IF=1.004) [Link]