*DRONES: Our Future Skies
Sabo, C., Cope, A., Gurny, K., Vasilaki, E., & Marshall, J. A. (2016). Bio-Inspired Visual Navigation for a Quadcopter using Optic Flow. In AIAA Infotech@ Aerospace (p. 0404). "The limitations imposed by these constraints are especially acute if the UAV includes a human in its control loop. A key factor limiting UAV growth is therefore their ability to display autonomous and intelligent control with little human intervention [2]. The study of flying insects is interesting from the point of view of sUAV design, because they share similar constraints (i.e. small size, low weight, and low energy consumption). There has been extensive research in this area in order to enable robots with similar capabilities and with comparable efficiency", "There is a lot of interest in the sUAV community to develop reactive control for better low-level autonomy so as to free up mission control to make better high-level decisions" "The behavior in bees (and therefore, the control development discussed in the next section) are largely explained by three simple rules: (1) maintain lateral position by balancing the angular velocity in the left and right eye, (2) uphold forward velocity by regulating the total angular velocity against an empirical setpoint, and (3) adjust altitude by balancing the ventral angular velocity against an empirical setpoint"
de Croon, G. C. (2016). Monocular distance estimation with optical flow maneuvers and efference copies: a stability-based strategy. Bioinspiration & biomimetics, 11(1), 016004.
Lee, D. N., Davies, M. N., & Green, P. R. (1993). Visual control of velocity of approach by pigeons when landing. Journal of Experimental Biology,180(1), 85-104.
Expert, F., & Ruffier, F. (2015). Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.Bioinspiration & biomimetics, 10(2), 026003.
Floreano, D., Pericet-Camara, R., Viollet, S., Ruffier, F., Brückner, A., Leitel, R., ... & Dobrzynski, M. K. (2013). Miniature curved artificial compound eyes.Proceedings of the National Academy of Sciences,110(23), 9267-9272.
Kendoul, F. (2014). Four-dimensional guidance and control of movement using time-to-contact: Application to automated docking and landing of unmanned rotorcraft systems. The International Journal of Robotics Research, 33(2), 237-267.
Ardin, P., Peng, F., Mangan, M., Lagogiannis, K., & Webb, B. (2016). Using an Insect Mushroom Body Circuit to Encode Route Memory in Complex Natural Environments. PLOS Comput Biol, 12(2), e1004683.
Hattenberger, G., Bronz, M., & Gorraz, M. (2014, August). Using the paparazzi UAV system for scientific research. In IMAV 2014, International Micro Air Vehicle Conference and Competition 2014(pp. pp-247).
検討
*Monteiro M, Stari C, Cabeza C, Marti AC (2015) Analyzing the flight of a quadcopter using a smartphone. arXiv:1511.05916 [physics.ed-ph]
ソフト生物模倣はばたきロボット,電通大・明研究室 間接飛翔筋模倣型.
ドローン(日本)
JUIDA,日本UAS産業振興協議会
「ドローン(飛行ロボット)の最新動向と展望」,内閣府第一回近未来技術実証特区検討会.資料4,平成27年1月15日. 非GPS環境下の自律制御,放射原発プロジェクト等.
Biology as Engineer
[Biological Screw] ]van de Kamp, T., Vagovič, P., Baumbach, T., & Riedel, A. (2011). A biological screw in a beetle’s leg. Science, 333(6038), 52-52.
*dos Santos Rolo, T., Ershov, A., Van De Kamp, T., & Baumbach, T. (2014). In vivo X-ray cine-tomography for tracking morphological dynamics.Proceedings of the National Academy of Sciences,111(11), 3921-3926.
Van De Kamp, T., dos Santos Rolo, T., Vagovič, P., Baumbach, T., & Riedel, A. (2014). Three-dimensional reconstructions come to life–interactive 3D PDF animations in functional morphology. PloS one, 9(7), e102355.
van de Kamp, T., Cecilia, A., dos Santos Rolo, T., Vagovič, P., Baumbach, T., & Riedel, A. (2015). Comparative thorax morphology of death-feigning flightless cryptorhynchine weevils (Coleoptera: Curculionidae) based on 3D reconstructions.Arthropod structure & development, 44(6), 509-523.
Locomotion
Jayaram, K., & Full, R. J. (2016). Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. Proceedings of the National Academy of Sciences, 201514591.
Neuroethology 神経行動学
Srinivasan MV (2015) Of bees, birds, and 'bots', IEEE Potentials 34:14965228.
Floreano D, Wood R (2015) Science, technology and the future of small autonomous drones. 521:460-466. ハーバード大学ワイス研究所ウッド教授,はばたき飛行を動力機構・神経系をまるごと模倣するRobobeeプロジェクト.ドローンの研究開発は、飛行昆虫の神経行動学の成果を取り入れることで発展してきた."Most efforts in small autonomous drones have focused on achieving reactive autonomy by translating decades worth of neuroethological research on vision-based insect flight into simple control algorithms and lightweight sensors, with many also serving as validation of biological models"
Martín Monteiro, Cecilia Stari, Cecilia Cabeza, Arturo C. Marti (2015) Analyzing the flight of a quadcopter using a smartphone. arXiv:1511.05916 [physics.ed-ph]
Space Exploration 宇宙開発アプリケーション
久保田孝,「『広域未踏峰』探査技術で目指すもの」.太陽系フロンティア開拓による人類の生存圏・活動領域拡大に向けたオープンイノベーションハブ課題設定ワークショップ.平成27年9月16日東京. 「宇宙探査の在り方を変える」,小型探査機による分散協調による探査.
What If We Landed 10,000 Robot Insects On A Planet?, Space Today Online: Covering space from earth to the edge of the universe. Anthony R. Curtis博士によるオンラインニュースマガジン.NASA JPL 太陽系大使(?)など.
Kerschmann R, Levine J, Studor G, Keith L, Winterhalter D (2014) Implementing Natural Systems-Inspired Design in SystemsEngineering for Mars Surface Operations, IEEE Aerospace Conference 1-11.
Sabiron G, Chavent P, Burlion L, Kervendal E, Bornschlegl E, Fabiani P, Raharijaona T, Ruffier F (2013) Toward an Autonomous Lunar Landing Based on Low-speed Optic Flow Sensors. In Advances in Aerospace Guidance, Navigation and Control pp 681-699.
Thakoor S, Chahl J, Srinivasan MV, Young L, Werblin F, Hine B, Zornetzer S (2002) Bioinspired Engineering of Exploration Systems for NASA and DoD. Artificial Life 8: 357–369.
Bar-Cohen Y, Colozza A, Badescu M, Sherrit S, Bao X (2012) Biomimetic Flying Swarm of Entomopters for Mars Extreme Terrain Science Investigations. Concepts and Approaches for Mars Exploration, held June 12-14, 2012 in Houston, Texas. LPI Contribution No. 1679, id.4075.
Scott GP, Ellery A (2004) TAROS 2004 - Biomimicry as applied to space robotics. University of Suurey
"Bio-mimicry and space exploration", October 29, 2015 by Evan Gough, Universe Today
"What's the best design for a flying Mars robot?", Universe Today
NASA 研究プロジェクト,A Comparison of Honeycomb Structures Built by Apis millifera (SE82-17)
和文言説
増田貴司,「バイオミメティクスの新展開~生物に学ぶものづくりイノベーションの現状と課題~」,東レ経営研究所,産業経済の論点,201511月6日.
下村政嗣,「生物の多様性に学ぶ新世代バイオミメティック材料技術の新潮流」,科学技術動向研究 2010年5月号,110:9-28
特許庁,「特許出願技術動向調査報告書 バイオミメティクス」,平成27年3月
Others related: Strouhal Number
”The Strouhal Number in Cruising Flight", by Jonathan Corum氏,Colin Pennycuick’s average flapping frequency equation
Graham K. Taylor, Robert L. Nudds, Adrian L. R. (2003) Thomas Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency Nature 425, 707–711.
ニュース [宇宙開発・ドローン]
9/21,”Helicopter's Robotic Legs Help Stick Tricky Landings”,Discovery.com DARPAバイオミメティックヘリコプター,昆虫型ランディングギアで,不整地・高スロープへ着陸.
6/15,「探査車・昆虫型ロボが資源探査へ!JAXA、産学官で宇宙探査技術開発」,日刊工業新聞
[その他]
12/21,「昆虫を害虫としか見ない日本は『宝の持ち腐れ』」,グノシー,食糧問題.
11/11,”Roaches Wearing Tiny Backpacks Could One Day Rescue Disaster Survivors”,WIRED, Cyborg Nation,ノースカロライナ大学,神経チップをバックパックに.触角を刺激することでゴキブリの移動をコントロール.Not pest species, exotic from マダガスカル.トルコ地震での経験,人命救助のために大量のサイバーローチ,災害時のファースト・レスポンダーに.生存者を発見したらビーコンでローチの位置を特定.DARPAは飛行昆虫にも資金援助.ムービー有り(虫が苦手な人は閲覧注意).
Learning Security System from Nature
Saragin RD (2010) Decentralize, adapt and cooperate. Nature 465:292-293.
ラボ
iRobot Corporation
PackBot パックボット
山本行雄【連載:世界一の品質を取り戻す36】 検証・日本の品質力 原発事故から浮かび上がった 「ロボット大国・日本」の弱点 新技術開発センター テクノビジョンダイジェスト
淺間 一(2011) 東日本大震災および福島第一原子力発電所事故におけるロボット技術の導入とその課題(その1).日本ロボット学会誌 29:7
淺間 一(2011) 東日本大震災および福島第一原子力発電所事故におけるロボット技術の導入とその課題(その2).日本ロボット学会誌 29:9
Roomba ルンバ
Tribelhorn B, Dodds Z (2007) Evaluating the Roomba: A low-cost, ubiquitous platform for robotics research and education. IEEE Robotics Automation
iRobot Roomba, Owner's manual , iRobot Corporation
How Robotic Vacuums Work, How stuff works TECH
Ackerman E, Guizzo E (2015) iRobot Brings Visual Mapping and Navigation to the Roomba 980 IEEE Spectrum
Tod E. Kurt (2007) Hacking Roomba, Wiley Publishing Inc.
ナビゲーション
Gaffin DD, Dewar A, Graham P, Philippides A (2015) Insect-Inspired Navigation Algorithm for an Aerial Agent Using Satellite Imagery. PLoS ONE 10(4): e0122077.
Bertrand OJN, Lindemann JP, Egelhaaf M (2015) A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes. PLoS Comput Biol 11(11): e1004339.
バイオミメティクス・実機
その他
*Bromenshenk J.J., Henderson C.B., Seccomb R.A., Welch P.M., Debnam S.E., Firth D.R. 2015) Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome. Biosensors 5:678-711.
----
軍事関連予算:
Uwe Homberg, Friedrich Gert Stange, Eric J. Warrant (2011) "Nocturnal Visual Orientation in Flying Insects: A Benchmark for the Design of Vision-based Sensors in Micro-Aerial Vehicles" 2008-2010. EOARD SPC 07-4011 & EOARD Grant 08-3021, Air Force Research Laboratory Air Force Office of Scientific Research European Office of Aerospace Research and Development.
----
自律性
Brooks RA (1991) New approaches to robotics. Science 253:1227-1232.
Connell JH (1987) Creature design with the subsumption architecture. Proc AAAI 87:1124-1126.
Beer RD (1990) Intelligence as adaptive behavior. An experiment in computational neuroethology. New York: Academy Press.
Effken JA, Shaw RE (1992) Ecological perspectives on the new artifical intelligence. Ecol Psychol 4:247-270.
Duchon AP, Warren WH (1994) Robot navigation from a Gibsonian viewpoint. IEEE Conf Syst
Duchon AP, Warren WH, Kaelbling LP (1995) Ecological robotics: Controlling behavior with optic flow. Proc 17th Annu Conf Cogn Sci. Pittsburgh: University of Pittsburgh pp. 164-169.
Duchon AP, Kaelbling LP, Warren WH (1998) Ecological Robotics. Adapt Behav 6:473-507.
Srinivasan MV (1998) Insects as Gibsonian animals. Ecol Psychol 10:251-270.
Paper R (2013) On the ecological approach to information and control for roboticists. Int J Adv Robot Syst 1:1-11.
Cooperation, Self-organization
Franklin S, Coordination without communication. lnk 環境を介し他個体に情報を伝えるアクションのうち,意図的なものをコミュニケーション,意図的でなく協調(Coordination)が成立するケースを議論.例ゲンギス
Sokolowski MB (2010) Social interactions in "Simple" model systems. Neuron 65:780-794.
群知能
**Dervis KARABOGA (2005) An idea based on honey bee swarm for numerical optimization
Karaboga D, Akay B (2009) A survay: algorithms simulating bee swarm intelligence. 31:61-85.
Schatz B, Lachaud JP, Beugnon G (1997) Graded recruitment and hunting strategies linked to prey weight and size in the ponerine ant Ectatomma ruidum. Behav Evol Sociobiol 40:337-349. Ponerine antは基本的に単独で狩りを行うが,獲物のサイズと重さに応じて,Collectiveなハンティングも行う.Stinger とTransporterに役割分担.Stingerの数には上限がある.
*Franks NR, Pratt SC, Mallon EB, Britton NF, Sumpter DJT (2002) Information flow, opinion polling and collective intelligence in house-hunting social insects. Philos Trans R Soc Lond B Biol Sci 357:1567-1583.
輸送
Traniello JFA (1983) Social organization and foraging success in Lasius neoniger (Hymenoptera: Formicidae): Behavioral and ecological aspects of recruitment communication. Oecologia 59:94-100. 短距離・長距離リクルートメントを組み合わせたmultistage approach.
Franks NR (1986) Temas in social insects: Group retrieval of prey by army ants (Eciton burchelli, Hymenoptera, Formicidae). Behav Ecol Sociobiol. 18:425-429, 1986.グループサイズ決定の機構.
**Berman S, Lindsey Q, Sakar MS, Kumar V, Pratt S (2011) Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems. Proc IEEE 99:1470-1481.
Stigmergy
Martius G, Der R, Ay N (2013) Information Driven Self-Organization of Complex Robotic Behaviors. PLoS ONE DOI: 10.1371/journal.pone.0063400 ”The behavior can be decomposed into a succession of low-dimensional modes that increasingly explore the behavior space”
Sokolowski, M. B. (2010). Social interactions in “simple” model systems. Neuron, 65(6), 780-794.
*ドローンの応用に関して,虫に学べること.