Health

COVID-19-safe seats in intercontinental aircrafts

Contributors: Nihar Sawant, Andrew Keene

Pollutant transport inside Boeing B747

The evolution of coronavirus disease (COVID-19) into a pandemic has severely hampered the usage of public transit systems. In a post-COVID-19 world, we may see an increased reliance on autonomous cars and personal rapid transit (PRT) systems, with inherent physical distancing, over buses, trains and aircraft for intracity, intercity, and interstate travel. However, air travel would continue to be the dominant mode of intercontinental transportation for humans. In this study, we perform a comprehensive computational analysis, using ANSYS Fluent, of typical intercontinental aircraft ventilation systems to determine the seat where environmental factors are most conducive to human comfort with regards to air quality, protection from orally or nasally released pollutants such as CO2 and coronavirus, and thermal comfort levels. Air velocity, temperature, and air pollutant concentration emitted from the nose/mouth of fellow travelers are considered for both Boeing and Airbus planes. In each plane, first class, business class, and economy class sections were analyzed. We present conclusions as to which is the optimum seat in each section of each plane and provide the data of the environmental conditions to support our inferences. The findings may be used by the general public to decide which seat to occupy for their next intercontinental flight.

Publication:

Desai, P., Swant, N., Keene, A., On COVID-19-safety ranking of seats in intercontinental commercial aircrafts: A preliminary multiphysics computational perspective, Building Simulation, 2021

AI for forecasting the spread of COVID-19 at county level