Для решения многих геометрических задач, связанных с тетраэдром и параллелепипедом, полезно уметь строить на рисунке их сечения различными плоскостями.
Под сечением будем понимать любую плоскость (назовем ее секущей плоскостью), по обе стороны от которой имеются точки данной фигуры (то есть тетраэдра или параллелепипеда). Секущая плоскость пересекает тетраэдр (параллелепипед) по отрезкам. Многоугольник, который будет образован этими отрезками, и является сечением фигуры. Так как тетраэдр имеет четыре грани, то его сечением могут быть треугольники и четырехугольники (рис. 1). Параллелепипед имеет шесть граней. Его сечением могут быть треугольники (рис. 2 а), четырехугольники (рис. 2 б), пятиугольники (рис. 2 в) и шестиугольники (рис. 2 г).
При построении сечения параллелепипеда учитываем тот факт, что если секущая плоскость пересекает две противоположные грани по каким-то отрезкам, то эти отрезки параллельны (свойство 1, п. 11: Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны). Более подробно с построением сечения параллелепипеда мы познакомимся на следующем уроке.
Для построения сечения достаточно построить точки пересечения секущей плоскости с ребрами тетраэдра (параллелепипеда), после чего остается провести отрезки, соединяющие каждые две построенные точки, лежащие в одной и той же грани.
2) Рассмотрим примеры построения различных сечений тетраэдра, для этого решим задачу:
№1. На ребрах АВ, BD и CDтетраэдра ABCD отмечены точки М, N, Р (рис. 3 а). Построить сечение тетраэдра плоскостью MNP.
Решение: Построим сначала прямую, по которой плоскость MNP пересекается с плоскостью грани ABC. Точка М является общей точкой этих плоскостей. Для построения еще одной общей точки продолжим отрезки NP и ВС до их пересечения в точке Е (рис. 3 б), которая и будет второй общей точкой плоскостей MNP и ABC. Следовательно, эти плоскости пересекаются по прямой ME. Прямая ME пересекает ребро АС в некоторой точке А. Четырехугольник MNPQ - искомое сечение.
Если прямые NP и ВС параллельны (рис. Зв), то прямая NP параллельна грани ABC, поэтому плоскость MNP пересекает эту грань по прямой ME, параллельной прямой NP. Точка Q, как и в предыдущем случае, есть точка пересечения ребра АС с прямой ME.
ЗАДАЧИ:
№2. Построить сечение тетраэдра DABC плоскостью, проходящей через данные точки MNK.м
(Решение: Проводим прямую MN. Проводим прямую РК. Пусть она пересекает стороны АС и АВ в точках Е и F. Проводим отрезки NE и MF. Искомое сечение - четырехугольник MNEF (рис. 4).
№3. Построить сечение тетраэдра DABC плоскостью, проходящей через данные точки MNK.
№4. Построить сечение тетраэдра DABC плоскостью, проходящей через данные точки М, N, К. Найти периметр сечения. Ребро тетраэдра равно а
№5. Построить сечение тетраэдра DABC плоскостью, проходящей через данные точки М, N, К; NM || АС
- построить сечение тетраэдра DABC плоскостью, проходящей через данные точки М, N, К. EKNM - искомое сечение (рис. 8).