General Papers
-Makin TR, Orban de Xivry JJ. Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. Elife. 2019 Oct 9;8:e48175.
-Lang T. Twenty statistical errors even you can find in biomedical research articles. Croat Med J. 2004 Aug;45(4):361-70.
-Worthy G. Statistical analysis and reporting: common errors found during peer review and how to avoid them. Swiss Med Wkly. 2015 Feb 4;145:w14076.
-Sullivan LM, Weinberg J, Keaney JF Jr. Common Statistical Pitfalls in Basic Science Research. J Am Heart Assoc. 2016 Sep 29;5(10):e004142.
-Dwivedi AK. How to write statistical analysis section in medical research. J Investig Med. 2022 Dec;70(8):1759-1770.
-Pollard DA, Pollard TD, Pollard KS. Empowering statistical methods for cellular and molecular biologists. Molecular Biology of the Cell. 2019 Jun 1;30(12):1359-68.
-Vorland CJ, Golzarri-Arroyo L, Allison DB. A brief guide to statistical analysis of grouped data in preclinical research. Nature Metabolism. 2025, in press.
-Padhee S, Ahmed S. Application of statistics in biomedical research. Journal of Integrative Medicine and Research. 2024 Apr 1;2(2):66-71.
-Caldwell AR, Cheuvront SN. Basic statistical considerations for physiology: The journal Temperature toolbox. Temperature (Austin). 2019 Jun 25;6(3):181-210.
-Althouse AD, Below JE, Claggett BL, Cox NJ, de Lemos JA, Deo RC, Duval S, Hachamovitch R, Kaul S, Keith SW, Secemsky E, Teixeira-Pinto A, Roger VL. Recommendations for Statistical Reporting in Cardiovascular Medicine: A Special Report From the American Heart Association. Circulation. 2021 Jul 27;144(4):e70-e91.
-Bajwa SJ. Basics, common errors and essentials of statistical tools and techniques in anesthesiology research. Journal of Anaesthesiology Clinical Pharmacology. 2015 Oct 1;31(4):547-53.
-Schubert A-L, Steinhilber M, Kang H, Quintana DS. Improving Statistical Reporting in Psychology. Preprint, PsyArXiv, 2025.
-Lang TA, Altman DG. Basic statistical reporting for articles published in biomedical journals: the “Statistical Analyses and Methods in the Published Literature” or the SAMPL Guidelines. International journal of nursing studies. 2015 Jan 1;52(1):5-9.
-Nieminen P. Ten points for high-quality statistical reporting and data presentation. Applied Sciences. 2020 Jun 3;10(11):3885.
-Thiese MS, Arnold ZC, Walker SD. The misuse and abuse of statistics in biomedical research. Biochemia medica. 2015 Feb 15;25(1):5-11.
-Kanellopoulou A, Dwan K, Richardson R. Common statistical errors in systematic reviews: A tutorial. Cochrane Evidence Synthesis and Methods. 2025 Mar;3(2):e70013.
-Dwivedi AK, Shukla R. Evidence‐based statistical analysis and methods in biomedical research (SAMBR) checklists according to design features. Cancer Reports. 2020 Aug;3(4):e1211.
-Matthews R. History of biostatistics. Medical Writing. 2016 Sep 1;25:8-11.
-Cressman KA, Sharp JL. Crafting Statistical Analysis Plans: a Cross‐Discipline Approach. Stat, 2022: e528
-Yuan I, Topjian AA, Kurth CD, Kirschen MP, Ward CG, Zhang B, Mensinger JL. Guide to the statistical analysis plan. Pediatric Anesthesia. 2019 Mar;29(3):237-42.
-Simpson SH. Creating a data analysis plan: What to consider when choosing statistics for a study. The Canadian journal of hospital pharmacy. 2015 Jul;68(4):311.
-Gamble C, Krishan A, Stocken D, Lewis S, Juszczak E, Doré C, Williamson PR, Altman DG, Montgomery A, Lim P, Berlin J. Guidelines for the content of statistical analysis plans in clinical trials. JAMA. 2017 Dec 19;318(23):2337-43.
-Brimacombe MB. Biostatistical and medical statistics graduate education. BMC Med Educ. 2014 Jan 28;14:18.
-Dakhale GN, Hiware SK, Shinde AT, Mahatme MS. Basic biostatistics for post-graduate students. Indian J Pharmacol. 2012 Jul-Aug;44(4):435-42.
-Zitomer RA, Karr J, Kerstens M, Perry L, Ruth K, Adrean L, Austin S, Cornelius J, Dachenhaus J, Dinkins J, Harrington A. Ten simple rules for getting started with statistics in graduate school. PLOS Computational Biology. 2022 Apr 21;18(4):e1010033.
-Windish DM. Brief curriculum to teach residents study design and biostatistics. Evid Based Med. 2011 Aug;16(4):100-4.
-Ocaña-Riola R. The use of statistics in health sciences: situation analysis and perspective. Statistics in biosciences. 2016 Oct;8(2):204-19.
-Garcia-Milian R, Hersey D, Vukmirovic M, Duprilot F. Data challenges of biomedical researchers in the age of omics. PeerJ. 2018 Sep 11;6:e5553.
-Lam SW, Bauer SR, Yang W, Miano TA. Statistics Myth Busters: Dispelling Common Misperceptions Held by Readers of the Biomedical Literature. Ann Pharmacother. 2017 May;51(5):429-438.
-Stodden V. Reproducing statistical results. Annual Review of Statistics and Its Application. 2015 Apr 10;2(1):1-9.
-Gardenier JS. Recommendations for describing statistical studies and results in general readership science and engineering journals. Sci Eng Ethics. 2012 Dec;18(4):651-62.
-Gosselin RD. Guidelines on statistics for researchers using laboratory animals: the essentials. Lab Anim. 2019 Feb;53(1):28-42.
-Yu Z, Guindani M, Grieco SF, Chen L, Holmes TC, Xu X. Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron. 2021 Nov 9:S0896-6273(21)00845-X.
-Holman C, Piper SK, Grittner U, Diamantaras AA, Kimmelman J, Siegerink B, Dirnagl U. Where Have All the Rodents Gone? The Effects of Attrition in Experimental Research on Cancer and Stroke. PLoS Biol. 2016 Jan 4;14(1):e1002331.
-Reynolds PS. Between two stools: preclinical research, reproducibility, and statistical design of experiments. BMC Research Notes. 2022 Feb 21;15(1):73.
-Weissgerber TL, Garcia-Valencia O, Garovic VD, Milic NM, Winham SJ. Why we need to report more than 'Data were Analyzed by t-tests or ANOVA'. Elife. 2018 Dec 21;7:e36163.
-Oster RA, Enders FT. The importance of statistical competencies for medical research learners. Journal of Statistics Education. 2018 May 4;26(2):137-42.
-Enders FT, Lindsell CJ, Welty LJ, Benn EKT, Perkins SM, Mayo MS, Rahbar MH, Kidwell KM, Thurston SW, Spratt H, Grambow SC, Larson J, Carter RE, Pollock BH, Oster RA. Statistical competencies for medical research learners: What is fundamental? J Clin Transl Sci. 2017 Jun;1(3):146-152.
-Brearley AM, Rott KW, Le LJ. A biostatistical literacy course: teaching medical and public health professionals to read and interpret statistics in the published literature. Journal of Statistics and Data Science Education. 2023 Sep 2;31(3):286-94.
-Zapf A, Huebner M, Rauch G, Kieser M. What makes a biostatistician?. Statistics in medicine. 2019 Feb 20;38(4):695-701.
-Bromage A, Pierce S, Reader T, Compton L. Teaching statistics to non-specialists: Challenges and strategies for success. Journal of Further and Higher Education. 2022 Jan 2;46(1):46-61.
-Weissgerber TL, Garovic VD, Milin-Lazovic JS, Winham SJ, Obradovic Z, Trzeciakowski JP, Milic NM. Reinventing Biostatistics Education for Basic Scientists. PLoS Biol. 2016 Apr 8;14(4):e1002430.
-Mills JD, Raju D. Teaching statistics online: A decade's review of the literature about what works. Journal of Statistics Education. 2011 Jul 1;19(2).
-MacDougall M, Cameron HS, Maxwell SRJ. Medical graduate views on statistical learning needs for clinical practice: a comprehensive survey. BMC Med Educ. 2019 Dec 31;20(1):1.
-Johnston BC, Alonso-Coello P, Friedrich JO, Mustafa RA, Tikkinen KAO, Neumann I, Vandvik PO, Akl EA, da Costa BR, Adhikari NK, Dalmau GM, Kosunen E, Mustonen J, Crawford MW, Thabane L, Guyatt GH. Do clinicians understand the size of treatment effects? A randomized survey across 8 countries. CMAJ. 2016 Jan 5;188(1):25-32.
-Shillam CR, Ho G, Commodore-Mensah Y. Online biostatistics: evidence-based curriculum for master's nursing education. J Nurs Educ. 2014 Apr;53(4):229-32.
-Bland JM. Teaching statistics to medical students using problem-based learning: the Australian experience. BMC Med Educ. 2004 Dec 10;4(1):31.
-Wang SL, Zhang AY, Messer S, Wiesner A, Pearl DK. Student-developed shiny applications for teaching statistics. Journal of Statistics and Data Science Education. 2021 Sep 2;29(3):218-27.
-Gosselin RD. Insufficient transparency of statistical reporting in preclinical research: a scoping review. Scientific Reports. 2021 Feb 8;11(1):1-8.
-Dembe AE, Partridge JS, Geist LC. Statistical software applications used in health services research: analysis of published studies in the U.S. BMC Health Serv Res. 2011 Oct 6;11:252.
-Hedlund Å, Lindberg M. A matter of research integrity: The reporting of statistical software used in studies published in nursing journals in 2023. Learned Publishing. 2024 Oct;37(4):e1622.
-Masuadi E, Mohamud M, Almutairi M, Alsunaidi A, Alswayed AK, Aldhafeeri OF, Almutairi MB. Trends in the usage of statistical software and their associated study designs in health sciences research: a bibliometric analysis. Cureus. 2021 Jan 11;13(1).
-Gosselin RD. Statistical Analysis Must Improve to Address the Reproducibility Crisis: The ACcess to Transparent Statistics (ACTS) Call to Action. Bioessays. 2020 Jan;42(1):e1900189.
-Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression dilution bias. BMJ. 2010 Jun 23;340.
-Berglund L. Regression dilution bias: tools for correction methods and sample size calculation. Upsala journal of medical sciences. 2012 Aug 1;117(3):279-83.
-Wan F. Statistical analysis of two arm randomized pre-post designs with one post-treatment measurement. BMC Med Res Methodol. 2021 Jul 24;21(1):150.
Statistical Tests
-Thomas E. An introduction to medical statistics for health care professionals: describing and presenting data. Musculoskeletal Care. 2004;2(4):218-28.
-Kwak SG, Kim JH. Central limit theorem: the cornerstone of modern statistics. Korean J Anesthesiol. 2017 Apr;70(2):144-156.
-Kwak SG, Kang H, Kim JH, Kim TK, Ahn E, Lee DK, Lee S, Park JH, Nahm FS, In J. The principles of presenting statistical results: Table. Korean J Anesthesiol. 2021 Apr;74(2):115-119.
-Whitley E, Ball J. Statistics review 1: presenting and summarising data. Crit Care. 2002 Feb;6(1):66-71.
-Bakker M, Wicherts JM. Outlier removal and the relation with reporting errors and quality of psychological research. PLoS One. 2014 Jul 29;9(7):e103360.
-Ehrlinger L, Wöß W. A survey of data quality measurement and monitoring tools. Frontiers in big data. 2022 Mar 31;5:850611.
-Krzywinski M, Altman N. Points of significance: error bars. Nat Methods. 2013 Oct;10(10):921-2.
-Krzywinski M, Altman N. Visualizing samples with box plots. Nat Methods. 2014 Feb;11(2):119-20.
-Kenny M, Schoen I. Violin SuperPlots: visualizing replicate heterogeneity in large data sets. Molecular Biology of the Cell. 2021 Jul 15;32(15):1333-4.
-Hu K. Become competent within one day in generating boxplots and violin plots for a novice without prior R experience. Methods and protocols. 2020 Sep 23;3(4):64.
-Nordmann E, McAleer P, Toivo W, Paterson H, DeBruine LM. Data Visualization Using R for Researchers Who Do Not Use R. Advances in Methods and Practices in Psychological Science. 2022 Apr;5(2):25152459221074654.
-Weissgerber TL, Savic M, Winham SJ, Stanisavljevic D, Garovic VD, Milic NM. Data visualization, bar naked: A free tool for creating interactive graphics. Journal of Biological Chemistry. 2017 Dec 15;292(50):20592-8.
-Franconeri SL, Padilla LM, Shah P, Zacks JM, Hullman J. The science of visual data communication: What works. Psychological Science in the Public Interest. 2021 Dec;22(3):110-61.
-Panos A, Mavridis D. TableOne: an online web application and R package for summarising and visualising data. Evidence-Based Mental Health. 2020 Aug 1;23(3):127-30.
-Jiang W, Chen H, Yang L, Pan X. moreThanANOVA: A user-friendly Shiny/R application for exploring and comparing data with interactive visualization. PLoS One. 2022 Jul 8;17(7):e0271185.
-Sperandei S. The pits and falls of graphical presentation. Biochem Med (Zagreb). 2014 Oct 15;24(3):311-20.
-Weissgerber TL, Milic NM, Winham SJ, Garovic VD. Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol. 2015 Apr 22;13(4):e1002128.
-Lord SJ, Velle KB, Mullins RD, Fritz-Laylin LK. SuperPlots: Communicating reproducibility and variability in cell biology. J Cell Biol. 2020 Jun 1;219(6):e202001064.
-Thrun MC, Gehlert T, Ultsch A. Analyzing the fine structure of distributions. PloS one. 2020 Oct 14;15(10):e0238835.
-Crameri F, Shephard GE, Heron PJ. Choosing Suitable Color Palettes for Accessible and Accurate Science Figures. Current Protocols. 2024 Aug;4(8):e1126.
-Hernandez-Sanchez S, Moreno-Perez V, Garcia-Campos J, Marco-Lledó J, Navarrete-Muñoz EM, Lozano-Quijada C. Twelve tips to make successful medical infographics. Medical Teacher. 2021 Dec 2;43(12):1353-9.
-Berry KJ, Johnston JE, Mielke Jr PW. Permutation methods. Wiley Interdisciplinary Reviews: Computational Statistics. 2011 Nov;3(6):527-42.
-Whitley E, Ball J. Statistics review 2: samples and populations. Crit Care. 2002 Apr;6(2):143-8.
-Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. Ann Card Anaesth. 2019 Jan-Mar;22(1):67-72.
-Vetter TR. Descriptive Statistics: Reporting the Answers to the 5 Basic Questions of Who, What, Why, When, Where, and a Sixth, So What? Anesth Analg. 2017 Nov;125(5):1797-1802.
-Kim HY. Statistical notes for clinical researchers: assessing normal distribution (1). Restor Dent Endod. 2012 Nov;37(4):245-8.
-Kim HY. Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor Dent Endod. 2013 Feb;38(1):52-4.
-Habibzadeh F. Data Distribution: Normal or Abnormal?. Journal of Korean Medical Science. 2024 Jan 1;39(3).
-Szabelska A, Pollet TV, Dujols O, Klein RA, IJzerman H. A Tutorial for Exploratory Research: An Eight-Step Approach. Preprint, 2021.
-Osborne J. Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research, and Evaluation. 2010;15(1):12.
-Whitley E, Ball J. Statistics review 3: hypothesis testing and P values. Crit Care. 2002 Jun;6(3):222-5.
-Krzywinski M, Altman N. Significance, P values and t-tests. Nat Methods. 2013 Nov;10(11):1041-2.
-Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, Altman DG. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol. 2016 Apr;31(4):337-50.
-Head ML, Holman L, Lanfear R, Kahn AT, Jennions MD. The extent and consequences of p-hacking in science. PLoS biology. 2015 Mar 13;13(3):e1002106.
-Krzywinski M, Altman N. Points of significance: Importance of being uncertain. Nat Methods. 2013 Sep;10(9):809-10.
-Whitley E, Ball J. Statistics review 4: sample size calculations. Crit Care. 2002 Aug;6(4):335-41.
-Lakens D. Sample size justification. Collabra: Psychology. 2022 Mar 22;8(1):33267.
-Bartlett JE, Charles SJ. Power to the People: A Beginner’s Tutorial to Power Analysis using jamovi. Meta-Psychology. 2022 Nov 8;6.
-Kovacs M, van Ravenzwaaij D, Hoekstra R, Aczel B. SampleSizePlanner: A Tool to Estimate and Justify Sample Size for Two-Group Studies. Advances in Methods and Practices in Psychological Science. 2022 Feb;5(1):25152459211054059.
-Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, Altman DG. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol. 2016 Apr;31(4):337-50.
-Harvey BJ, Lang TA. Hypothesis testing, study power, and sample size. Chest. 2010 Sep;138(3):734-7.
-Krzywinski M, Altman N. Points of significance: Power and sample size. Nat. Methods. 2013;10:1139-40.
-Pourhoseingholi MA, Vahedi M, Rahimzadeh M. Sample size calculation in medical studies. Gastroenterol Hepatol Bed Bench. 2013 Winter;6(1):14-7.
-Charan J, Biswas T. How to calculate sample size for different study designs in medical research? Indian J Psychol Med. 2013 Apr;35(2):121-6.
-Sharma SK, Mudgal SK, Thakur K, Gaur R. How to calculate sample size for observational and experimental nursing research studies?. Natl J Physiol Pharm Pharmacol. 2020;10(01).
-Kang H. Sample size determination and power analysis using the G* Power software. Journal of educational evaluation for health professions. 2021 Jul 30;18.
-Giner-Sorolla R, Montoya AK, Reifman A, Carpenter T, Lewis Jr NA, Aberson CL, Bostyn DH, Conrique BG, Ng BW, Schoemann AM, Soderberg C. Power to detect what? Considerations for planning and evaluating sample size. Personality and Social Psychology Review. 2019:10888683241228328.
-Anthoine E, Moret L, Regnault A, Sébille V, Hardouin JB. Sample size used to validate a scale: a review of publications on newly-developed patient reported outcomes measures. Health and quality of life outcomes. 2014 Dec;12(1):1-0.
-In J, Kang H, Kim JH, Kim TK, Ahn EJ, Lee DK, Lee S, Park JH. Tips for troublesome sample-size calculation. Korean J Anesthesiol. 2020 Apr;73(2):114-120.
-Zhang X, Hartmann P. How to calculate sample size in animal and human studies. Frontiers in Medicine. 2023;10.
-Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochemia Medica. 2021 Feb 15;31(1):27-53.
-Whitley E, Ball J. Statistics review 5: Comparison of means. Crit Care. 2002 Oct;6(5):424-8.
-Delacre M, Lakens D, Leys C. Why psychologists should by default use Welch's t-test instead of Student's t-test. International Review of Social Psychology. 2017 Apr 5;30(1):92-101.
-Krzywinski M, Altman N. Points of significance: Comparing samples—part I. Nat Methods. 2014 Mar;11(3):215-6.
-Krzywinski M, Altman N. Points of significance: Comparing samples--part II. Nat Methods. 2014 Apr 1;11(4):355.
-Whitley E, Ball J. Statistics review 6: Nonparametric methods. Crit Care. 2002 Dec;6(6):509-13.
-Krzywinski M, Altman N. Points of significance: Nonparametric tests. Nat Methods. 2014 May;11(5):467-8.
-Bewick V, Cheek L, Ball J. Statistics review 7: Correlation and regression. Crit Care. 2003 Dec;7(6):451-9.
-Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012 Sep;24(3):69-71.
-Akoglu H. User's guide to correlation coefficients. Turk J Emerg Med. 2018 Aug 7;18(3):91-93.
-Bewick V, Cheek L, Ball J. Statistics review 8: Qualitative data - tests of association. Crit Care. 2004 Feb;8(1):46-53.
-McHugh ML. The chi-square test of independence. Biochem Med (Zagreb). 2013;23(2):143-9.
-Kim HY. Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restorative dentistry & endodontics. 2017 May 1;42(2):152-5.
-Bewick V, Cheek L, Ball J. Statistics review 9: one-way analysis of variance. Crit Care. 2004 Apr;8(2):130-6.
-McHugh ML. Multiple comparison analysis testing in ANOVA. Biochem Med (Zagreb). 2011;21(3):203-9.
-Bewick V, Cheek L, Ball J. Statistics review 10: further nonparametric methods. Crit Care. 2004 Jun;8(3):196-9.
-Bewick V, Cheek L, Ball J. Statistics review 11: assessing risk. Crit Care. 2004 Aug;8(4):287-91.
-Richardson R, Kanellopoulou A, Dwan K. Risk ratios, odds ratios and the risk difference. BMJ Evidence-Based Medicine. 2024, in press.
-Bewick V, Cheek L, Ball J. Statistics review 12: survival analysis. Crit Care. 2004 Oct;8(5):389-94.
-George B, Seals S, Aban I. Survival analysis and regression models. J Nucl Cardiol. 2014 Aug;21(4):686-94.
-Rich JT, Neely JG, Paniello RC, Voelker CC, Nussenbaum B, Wang EW. A practical guide to understanding Kaplan-Meier curves. Otolaryngol Head Neck Surg. 2010 Sep;143(3):331-6.
-In J, Lee DK. Survival analysis: Part II - applied clinical data analysis. Korean J Anesthesiol. 2023 Feb;76(1):84-85.
-In J, Lee DK. Survival analysis: Part I - analysis of time-to-event. Korean J Anesthesiol. 2018 Jun;71(3):182-191.
-Bewick V, Cheek L, Ball J. Statistics review 13: receiver operating characteristic curves. Crit Care. 2004 Dec;8(6):508-12.
-He Z, Zhang Q, Song M, Tan X, Wang W. Four overlooked errors in ROC analysis: how to prevent and avoid. BMJ Evidence-Based Medicine. 2024, in press.
-Bewick V, Cheek L, Ball J. Statistics review 14: Logistic regression. Crit Care. 2005 Feb;9(1):112-8.
-Sperandei S. Understanding logistic regression analysis. Biochem Med (Zagreb). 2014 Feb 15;24(1):12-8.
-Lopez-Ayala P, Riley RD, Collins GS, Zimmermann T. Dealing with continuous variables and modelling non-linear associations in healthcare data: practical guide. BMJ. 2025 Jul 16;390.
-Hidalgo B, Goodman M. Multivariate or multivariable regression?. American journal of public health. 2013 Jan;103(1):39-40.
-Heinze G, Dunkler D. Five myths about variable selection. Transplant international. 2017 Jan;30(1):6-10.
-Greenacre M, Groenen PJ, Hastie T, d’Enza AI, Markos A, Tuzhilina E. Principal component analysis. Nature Reviews Methods Primers. 2022 Dec 22;2(1):100.
-Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Statistical methods in medical research. 2018 Jun;27(6):1785-805.
-Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology. 2014 Dec;14(1):1-3.
-Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology. 2005 Dec;5(1):1-0.
-Noble WS. How does multiple testing correction work? Nat Biotechnol. 2009 Dec;27(12):1135-7.
-Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt. 2014 Sep;34(5):502-8.
-Korthauer K, Kimes PK, Duvallet C, Reyes A, Subramanian A, Teng M, Shukla C, Alm EJ, Hicks SC. A practical guide to methods controlling false discoveries in computational biology. Genome biology. 2019 Dec;20:1-21.
-Chen SY, Feng Z, Yi X. A general introduction to adjustment for multiple comparisons. Journal of thoracic disease. 2017 Jun;9(6):1725.
-Wason JM, Stecher L, Mander AP. Correcting for multiple-testing in multi-arm trials: is it necessary and is it done?. Trials. 2014 Dec;15:1-7.
-Glickman ME, Rao SR, Schultz MR. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. Journal of clinical epidemiology. 2014 Aug 1;67(8):850-7.
-McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276-82.
-Giavarina D. Understanding Bland Altman analysis. Biochemia medica. 2015 Jun 15;25(2):141-51.
-Flora DB. Your coefficient alpha is probably wrong, but which coefficient omega is right? A tutorial on using R to obtain better reliability estimates. Advances in Methods and Practices in Psychological Science. 2020 Dec;3(4):484-501.
Sullivan GM, Artino AR Jr. Analyzing and interpreting data from Likert-type scales. J Grad Med Educ. 2013 Dec;5(4):541-2.
-Watkins MW. Exploratory factor analysis: A guide to best practice. Journal of Black Psychology. 2018 Apr;44(3):219-46.
-Goretzko D, Pham TT, Bühner M. Exploratory factor analysis: Current use, methodological developments and recommendations for good practice. Current psychology. 2021 Jul;40:3510-21.
-Forero DA, Lopez-Leon S, González-Giraldo Y, Bagos PG. Ten simple rules for carrying out and writing meta-analyses. PLoS Comput Biol. 2019 May 16;15(5):e1006922.
-Kelley GA, Kelley KS. Statistical models for meta-analysis: a brief tutorial. World journal of methodology. 2012 Aug 26;2(4):27.
-Thompson SG, Higgins JP. How should meta‐regression analyses be undertaken and interpreted?. Statistics in medicine. 2002 Jun 15;21(11):1559-73.
-Krzywinski M, Altman N. Points of view: designing comparative experiments. Nat Methods. 2014 Jun;11(6):597-8.
-Krzywinski M, Altman N. Points of significance: Analysis of variance and blocking. Nat Methods. 2014 Jul;11(7):699-700.
-Blainey P, Krzywinski M, Altman N. Points of significance: replication. Nat Methods. 2014 Sep;11(9):879-80.
-Krzywinski M, Altman N, Blainey P. Points of significance: nested designs. Nat Methods. 2014 Oct;11(10):977-8.
-Krzywinski M, Altman N. Points of significance: two-factor designs. Nat Methods. 2014 Dec;11(12):1187-8.
-Altman N, Krzywinski M. Points of significance: Sources of variation. Nat Methods. 2015 Jan;12(1):5-6.
-Bolboacă SD. Medical Diagnostic Tests: A Review of Test Anatomy, Phases, and Statistical Treatment of Data. Comput Math Methods Med. 2019 May 28;2019:1891569.
-Umemneku Chikere CM, Wilson K, Graziadio S, Vale L, Allen AJ. Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard - An update. PLoS One. 2019 Oct 11;14(10):e0223832.
-Beran TN, Violato C. Structural equation modeling in medical research: a primer. BMC Research Notes. 2010 Dec;3.267.
-Prokofieva M, Zarate D, Parker A, Palikara O, Stavropoulos V. Exploratory structural equation modeling: a streamlined step by step approach using the R Project software. BMC psychiatry. 2023 Jul 28;23(1):546.
-Lange T, Hansen KW, Sørensen R, Galatius S. Applied mediation analyses: a review and tutorial. Epidemiol Health. 2017 Aug 6;39:e2017035.
-Stage FK, Carter HC, Nora A. Path analysis: An introduction and analysis of a decade of research. The journal of educational research. 2004 Sep 1;98(1):5-13.
-Lee W, Grimm KJ. Generalized linear mixed-effects modeling programs in R for binary outcomes. Structural Equation Modeling: A Multidisciplinary Journal. 2018 Sep 3;25(5):824-8.
-Eddy SR. What is Bayesian statistics? Nat Biotechnol. 2004 Sep;22(9):1177-8.
-Goligher EC, Heath A, Harhay MO. Bayesian statistics for clinical research. The Lancet. 2024 Sep 14;404(10457):1067-76.
-Eddy SR. What is a hidden Markov model? Nat Biotechnol. 2004 Oct;22(10):1315-6.
-Bzdok D, Krzywinski M, Altman N. Points of Significance: Machine learning: a primer. Nat Methods. 2017 Nov 30;14(12):1119-1120.
-Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2021, in press.
-Bi Q, Goodman KE, Kaminsky J, Lessler J. What is Machine Learning? A Primer for the Epidemiologist. Am J Epidemiol. 2019 Dec 31;188(12):2222-2239.
-Rahmani AM, Yousefpoor E, Yousefpoor MS, Mehmood Z, Haider A, Hosseinzadeh M, Ali Naqvi R. Machine Learning (ML) in Medicine: Review, Applications, and Challenges. Mathematics. 2021 Jan;9(22):2970.
-Jiang T, Gradus JL, Rosellini AJ. Supervised machine learning: a brief primer. Behavior therapy. 2020 Sep 1;51(5):675-87.
-Pargent F, Schoedel R, Stachl C. Best practices in supervised machine learning: A tutorial for psychologists. Advances in Methods and Practices in Psychological Science. 2023 Jul;6(3):25152459231162559.
-Lee BD, Gitter A, Greene CS, Raschka S, Maguire F, Titus AJ, Kessler MD, Lee AJ, Chevrette MG, Stewart PA, Britto-Borges T, Cofer EM, Yu KH, Carmona JJ, Fertig EJ, Kalinin AA, Signal B, Lengerich BJ, Triche TJ Jr, Boca SM. Ten quick tips for deep learning in biology. PLoS Comput Biol. 2022 Mar 24;18(3):e1009803.
-Oneto L, Chicco D. Eight quick tips for biologically and medically informed machine learning. PLOS Computational Biology. 2025 Jan 9;21(1):e1012711.
-Liu Y, Chen PH, Krause J, Peng L. How to read articles that use machine learning: users’ guides to the medical literature. JAMA. 2019 Nov 12;322(18):1806-16.
-Neely L, Oyama S, Chen Q, Qutub A, Chen C. Tutorial: Lessons Learned for Behavior Analysts from Data Scientists. Perspectives on Behavior Science. 2024 Mar;47(1):203-23.
-Glymour C, Zhang K, Spirtes P. Review of causal discovery methods based on graphical models. Frontiers in Genetics. 2019 Jun 4;10:524.
-Lipsky AM, Greenland S. Causal Directed Acyclic Graphs. JAMA. 2022 Mar 15;327(11):1083-4.
-Laubach ZM, Murray EJ, Hoke KL, Safran RJ, Perng W. A biologist's guide to model selection and causal inference. Proc Biol Sci. 2021 Jan 27;288(1943):20202815.
-Li L, Cuerden MS, Liu B, Shariff S, Jain AK, Mazumdar M. Three Statistical Approaches for Assessment of Intervention Effects: A Primer for Practitioners. Risk Manag Healthc Policy. 2021 Feb 22;14:757-770.
-McDonald RJ, McDonald JS, Kallmes DF, Carter RE. Behind the numbers: propensity score analysis—a primer for the diagnostic radiologist. Radiology. 2013 Dec;269(3):640-5.
-Keller B, Tipton E. Propensity score analysis in R: A software review. Journal of Educational and Behavioral Statistics. 2016 Jun;41(3):326-48.
-Van Zyl LE, Ten Klooster PM. Exploratory structural equation modeling: Practical guidelines and tutorial with a convenient online tool for Mplus. Frontiers in psychiatry. 2022 Jan 7;12:795672.
-Nguyen TQ, Schmid I, Stuart EA. Clarifying causal mediation analysis for the applied researcher: Defining effects based on what we want to learn. Psychological Methods. 2021 Apr;26(2):255.
-Barnett I, Torous J, Staples P, Keshavan M, Onnela JP. Beyond smartphones and sensors: choosing appropriate statistical methods for the analysis of longitudinal data. Journal of the American Medical Informatics Association. 2018 Dec;25(12):1669-74.
-McCormick EM, Byrne ML, Flournoy J, Mills K, Pfeifer J. The Hitchhiker’s Guide to Longitudinal Models: A Primer on Model Selection for Repeated-Measures Methods. Preprint, 2021.
-Muhammad LN. Guidelines for repeated measures statistical analysis approaches with basic science research considerations. The Journal of clinical investigation. 2023 Jun 1;133(11).
-Boulesteix AL, Groenwold RH, Abrahamowicz M, Binder H, Briel M, Hornung R, Morris TP, Rahnenführer J, Sauerbrei W. Introduction to statistical simulations in health research. BMJ Open. 2020 Dec 1;10(12):e039921.
-Forero DA, Curioso WH, Patrinos GP. The importance of adherence to international standards for depositing open data in public repositories. BMC Res Notes. 2021 Nov 2;14(1):405.
-Broman KW, Woo KH. Data organization in spreadsheets. The American Statistician. 2018 Jan 2;72(1):2-10.
-Ellis SE, Leek JT. How to share data for collaboration. The American Statistician. 2018 Jan 2;72(1):53-7.
-Michener WK. Ten Simple Rules for Creating a Good Data Management Plan. PLoS Comput Biol. 2015 Oct 22;11(10):e1004525.
-Kanza S, Knight NJ. Behind every great research project is great data management. BMC Research Notes. 2022 Dec;15(1):1-5.
-Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJ, Groth P, Goble C, Grethe JS, Heringa J, 't Hoen PA, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone SA, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016 Mar 15;3:160018.
-Wicherts JM, Bakker M, Molenaar D. Willingness to share research data is related to the strength of the evidence and the quality of reporting of statistical results. PLoS One. 2011;6(11):e26828.
-Wagenmakers EJ, Sarafoglou A, Aarts S, Albers C, Algermissen J, Bahník Š, van Dongen N, Hoekstra R, Moreau D, van Ravenzwaaij D, Sluga A, Stanke F, Tendeiro J, Aczel B. Seven steps toward more transparency in statistical practice. Nat Hum Behav. 2021, in press.
-Gregory K, Khalsa SJ, Michener WK, Psomopoulos FE, de Waard A, Wu M. Eleven quick tips for finding research data. PLoS Comput Biol. 2018 Apr 12;14(4):e1006038.
-Gregory K. A dataset describing data discovery and reuse practices in research. Sci Data. 2020 Jul 13;7(1):232.
Scientific Programming
-Deshpande D, Chhugani K, Ramesh T, Pellegrini M, Shiffman S, Abedalthagafi MS, Alqahtani S, Ye J, Liu XS, Leek JT, Brazma A. The evolution of computational research in a data-centric world. Cell. 2024 Aug 22;187(17):4449-57.
-Mariano D, Martins P, Helene Santos L, de Melo‐Minardi RC. Introducing programming skills for life science students. Biochemistry and Molecular Biology Education. 2019 May;47(3):288-95.
-Carey MA, Papin JA. Ten simple rules for biologists learning to program. PLoS Comput Biol. 2018 Jan 4;14(1):e1005871.
-Hunter-Zinck H, De Siqueira AF, Vásquez VN, Barnes R, Martinez CC. Ten simple rules on writing clean and reliable open-source scientific software. PLoS computational biology. 2021 Nov 11;17(11):e1009481.
-Lee BD. Ten simple rules for documenting scientific software. PLOS Computational Biology. 2018 Dec 20;14(12):e1006561.
-Perez-Riverol Y, Gatto L, Wang R, Sachsenberg T, Uszkoreit J, Leprevost FD, Fufezan C, Ternent T, Eglen SJ, Katz DS, Pollard TJ. Ten simple rules for taking advantage of Git and GitHub. PLoS computational biology. 2016 Jul 14;12(7):e1004947.
-Pilgrim C, Kent P, Hosseini K, Chalstrey E. Ten simple rules for working with other people’s code. PLOS Computational Biology. 2023 Apr 20;19(4):e1011031.
-Cain JY, Jessica SY, Bagheri N. The in silico lab: Improving academic code using lessons from biology. Cell Systems. 2023 Jan 18;14(1):1-6.
-Giorgi FM, Ceraolo C, Mercatelli D. The R Language: An Engine for Bioinformatics and Data Science. Life. 2022 May;12(5):648.
-Lawlor J, Banville F, Forero-Muñoz NR, Hébert K, Martínez-Lanfranco JA, Rogy P, MacDonald AA. Ten simple rules for teaching yourself R. PLOS Computational Biology. 2022 Sep 1;18(9):e1010372.
-Hoffman AM, Wright C. Ten simple rules for teaching an introduction to R. PLoS Comput Biol. 2024 May 16;20(5):e1012018.
-Chen SY, Liu Q, Feng Z. Common data manipulations with R in biological researches. Journal of thoracic disease. 2017 Jul;9(7):2209.
-Eglen SJ. A quick guide to teaching R programming to computational biology students. PLoS computational biology. 2009 Aug 28;5(8):e1000482.
-Casals M, Fernández J, Martínez V, Lopez M, Langohr K, Cortés J. A systematic review of sport-related packages within the R CRAN repository. International Journal of Sports Science & Coaching. 2023 Apr;18(2):621-9.
-Bassi S. A primer on python for life science researchers. PLoS computational biology. 2007 Nov;3(11):e199.
-Ekmekci B, McAnany CE, Mura C. An introduction to programming for bioscientists: a Python-based primer. PLoS computational biology. 2016 Jun 7;12(6):e1004867.
-Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R. Array programming with NumPy. Nature. 2020 Sep 17;585(7825):357-62.
-Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, Van Der Walt SJ. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods. 2020 Mar 2;17(3):261-72.
-Roesch E, Greener JG, MacLean AL, Nassar H, Rackauckas C, Holy TE, Stumpf MPH. Julia for biologists. Nat Methods. 2023 May;20(5):655-664.
-Çetinkaya-Rundel M, Hardin J, Baumer BS, McNamara A, Horton NJ, Rundel C. An educator's perspective of the tidyverse. arXiv preprint, 2022
-Ashour L. A review of user-friendly freely-available statistical analysis software for medical researchers and biostatisticians. Research in Statistics. 2024 Dec 31;2(1):2322630.
-Divisi D, Di Leonardo G, Zaccagna G, Crisci R. Basic statistics with Microsoft Excel: a review. Journal of thoracic disease. 2017 Jun;9(6):1734.
-Elmakaty I. Mastering meta‐analysis in Microsoft Excel with MetaXL add‐in: A comprehensive tutorial and guide to meta‐analysis. Journal of evaluation in clinical practice. 2025 Mar;31(2):e14138.
-Schissler AG, Nguyen H, Nguyen T, Petereit J, Gardeux V. Statistical software. Wiley StatsRef: Statistics Reference Online. 2014 Apr 14:1-1.
-Ayyanar K. Software for Data Analysis in SPSS: An overview. Preprint, SSRN, 2016.
-Gutierrez RG. Stata. Wiley Interdisciplinary Reviews: Computational Statistics. 2010 Nov;2(6):728-33.
-Rodriguez RN. SAS. Wiley Interdisciplinary Reviews: Computational Statistics. 2011 Jan;3(1):1-1.
-Love J, Selker R, Marsman M, Jamil T, Dropmann D, Verhagen J, Ly A, Gronau QF, Šmíra M, Epskamp S, Matzke D. JASP: Graphical statistical software for common statistical designs. Journal of Statistical Software. 2019 Jan 29;88:1-7.
-Quintana DS, Williams DR. Bayesian alternatives for common null-hypothesis significance tests in psychiatry: a non-technical guide using JASP. BMC Psychiatry. 2018 Jun 7;18(1):178.
-Rogers P. Best practices for your confirmatory factor analysis: A JASP and lavaan tutorial. Behavior research methods. 2024 Oct;56(7):6634-54.
-Şahin M, Aybek E. Jamovi: an easy to use statistical software for the social scientists. International Journal of Assessment Tools in Education. 2019 Dec 19;6(4):670-92.
-Fox J. The R commander: a basic-statistics graphical user interface to R. Journal of statistical software. 2005 Aug 19;14:1-42.
-Horgan JM. Programming in R. Wiley Interdisciplinary Reviews: Computational Statistics. 2012 Jan;4(1):75-84.
-Wilson J. Statistical computing with R: selecting the right tool for the job—R Commander or something else?. Wiley Interdisciplinary Reviews: Computational Statistics. 2012 Nov;4(6):518-26.
-Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. Journal of statistical software. 2012 Jun 30;49:1-5.
-Polanin JR, Hennessy EA, Tanner-Smith EE. A review of meta-analysis packages in R. Journal of Educational and Behavioral Statistics. 2017 Apr;42(2):206-42.
-Owen RK, Bradbury N, Xin Y, Cooper N, Sutton A. MetaInsight: an interactive web‐based tool for analyzing, interrogating, and visualizing network meta‐analyses using R‐shiny and netmeta. Research synthesis methods. 2019 Dec;10(4):569-81.
-Balduzzi S, Rücker G, Nikolakopoulou A, Papakonstantinou T, Salanti G, Efthimiou O, Schwarzer G. netmeta: an R package for network meta-analysis using frequentist methods. Journal of Statistical Software. 2023 Mar 23;106:1-40.
-Pace-Loscos T, Gal J, Contu S, Schiappa R, Chamorey E, Culié D. StatiCAL: an interactive tool for statistical analysis of biomedical data and scientific valorization. BMC bioinformatics. 2024 Jun 12;25(1):210.
-Zhou Y, Leung SW, Mizutani S, Takagi T, Tian YS. MEPHAS: an interactive graphical user interface for medical and pharmaceutical statistical analysis with R and Shiny. BMC bioinformatics. 2020 Dec;21:1-1.
-Allen M, Poggiali D, Whitaker K, Marshall TR, van Langen J, Kievit RA. Raincloud plots: a multi-platform tool for robust data visualization. Wellcome open research. 2021 Jan 21;4:63.
-Goedhart J. SuperPlotsOfData—a web app for the transparent display and quantitative comparison of continuous data from different conditions. Molecular biology of the cell. 2021 Mar 15;32(6):470-4.
-Spitzer M, Wildenhain J, Rappsilber J, Tyers M. BoxPlotR: a web tool for generation of box plots. Nature methods. 2014 Feb;11(2):121-2.
-Postma M, Goedhart J. PlotsOfData—A web app for visualizing data together with their summaries. PLoS biology. 2019 Mar 27;17(3):e3000202.
-Hodges CB, Stone BM, Johnson PK, Carter III JH, Sawyers CK, Roby PR, Lindsey HM. Researcher degrees of freedom in statistical software contribute to unreliable results: A comparison of nonparametric analyses conducted in SPSS, SAS, Stata, and R. Behavior Research Methods. 2023 Sep;55(6):2813-37.
-Rode JB, Ringel MM. Statistical software output in the classroom: A comparison of R and SPSS. Teaching of Psychology. 2019 Oct;46(4):319-27.
-Jia L, Yao W, Jiang Y, Li Y, Wang Z, Li H, Huang F, Li J, Chen T, Zhang H. Development of interactive biological web applications with R/Shiny. Briefings in bioinformatics. 2022 Jan;23(1):bbab415.
-Moore JH, Tatonetti N. Vibe coding: a new paradigm for biomedical software development. BioData Mining. 2025 Jul 1;18:46.
-Chow M, Ng O. From technology adopters to creators: Leveraging AI-assisted vibe coding to transform clinical teaching and learning. Medical Teacher. 2025 Apr 9:1-3.
-Giunti G, Doherty CP. Cocreating an automated mHealth apps systematic review process with generative AI: Design science research approach. JMIR Medical Education. 2024 Feb 12;10:e48949.
.Huang Y, Wu R, He J, Xiang Y. Evaluating ChatGPT-4.0's data analytic proficiency in epidemiological studies: A comparative analysis with SAS, SPSS, and R. J Glob Health. 2024 Mar 29;14:04070.
-Mohamed AM. A comparative evaluation of statistical product and service solutions (SPSS) and ChatGPT-4 in statistical analyses. Cureus. 2024 Oct 28;16(10).
-Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M. Welcome to the Tidyverse. Journal of open source software. 2019 Nov 21;4(43):1686.
-Del Toro I, Dickson K, Hakes AS, Newman SL. Early Undergraduate Biostatistics & Data Science Introduction Using R, R Studio & the Tidyverse. The American Biology Teacher. 2022 Mar 1;84(3):124-9.
-Engler JB. Tidyplots empowers life scientists with easy code‐based data visualization. iMeta. 2024 Nov 10:e70018.