Introduction to Quantum Mechanics 

PH 411/511 ECE 598

Introduction to Quantum Mechanics

Portland State University                                                                                                                                                                                             Dr. Andres La Rosa
Fall 2023,  Sept 25th - Dec 8th                                                                                                                                                                                Email: andres@pdx.edu  

            ______________________________________________________________________________________________________________________________________________________  

          In the Fall-2023 term, for the first time, quantum mechanics experiments with single photons (currently
          ongoing at La Rosa's PSU Lab) will be expossed  to students.
                  -  Spontaneous parametric downcoversion.
                  -  Single photons exhibit quantum anticorrelation behavior: Proof of the existence of Photons.
                  - (Still in progress: Single Photon Interference.)
          These  modern experimentsare updated versions of experiments outlined in LECTURE-6 of this course,
          " The PRINCIPLE of COMPLEMENTARY Quantum Behavior of Photons, Electrons and Atoms "
          (See figures 6.4 and 6.5 in that lecture.)

           ______________________________________________________________________________________________________________________________________________________  


Organization
          On campus lectures
                Room:  Cramer Hall  158    
                T & Th 4:40-6:30 p.m.

          Online office hours 
                Wednesday, 3:00 - 4:00 p.m.
                ZOOM Meeting ID:  279 107 2579  
                  

Caution
This is a  course heavy on math.
We also have to be prepared to find ways to describe the motion of particles without using the concept of trajectories. Trajectories are incompatible with quantum mechanics (Heisenberg Principle).  Quantum Mechanics may appear then 'weird' for a person trained with classical mechanics methods (like  your current Professor.)
So, we will rely on specific mathematical tools that can guide us, in a logical way, into an understanding of the apparent mysteries of the quantum mechanics world.  In particular, we introduce the mathematical concept of "amplitude probability" (a complex number) assigned to a quantum event to occur. The quantum mechanics predictions made based on this tool, it turns out, coincide with the experimental results.

Text

No specific textbook is required.
Students should be able to follow this course with any standard Quantum Mechanics textbook from the PSU Library (some are recommended below.)
It should be pointed out, however, that the Lecture Notes for this course closely follows the following three references:
-      Richard Feynman, “The Feynman Lectures on Physics,” Volume III, Addison Wesley, 1989.
        It is available free online: http://feynmanlectures.caltech.edu/III_toc.html 
        Feynman provides an intuitive and logical introduction to the QM ideas, instead of being a purely axiomatic reference.
-     Claude Cohen-Tannoudji, et al, "Quantum Mechanics" Vol I, John Wiley & Sons.
        This reference provides a comprehensive ,and more conventional, presentation of the QM theory.
        It consistently uses the brac-ket notation.         
- Mark Beck, Quantum Mechanics, Theory and Experiments, Oxford University Press, 2012.
        It makes a modern presentation of QM theory, accompanied with guidance to   implement five QM laboratories that use single photon to
        demonstrate the existence of photons,  single-photon interference,  and quantum entanglement.
        Note:  In the Fall-2022 term, we will start presenting such interesting some of those laboratories (we have just started
                      purchasing the opto/mechanical components at this stage) , under the "Quantum Mechanics  Experiments with Single Photons" project.
                      (Ideally, we would have two, if not three, of such experiments ready to be shown to the class by the end of the term.) Two students from this class will be
                      hands-on participating in this project.

Other good references are:
      L. D. Landau and E. M. Lifshitz, “Quantum Mechanics (Non-relativistic Theory),” Butterworth Heinemann (2003).
      B. H. Bransdem and C. J. Joachin, "Quantum Mechanics," 2nd Ed. Prentice Hall.
      David Griffiths, "Introduction to Quantum Mechanics"; 2nd Edition, Pearson Prentice Hall.

For the classical Mechanics background, I have followed basically two books:
    Eugene Saletan and Alan H. Cromer, "Theoretical Mechanics," John Wiley, 1971;  and
    Herbert Goldstain, "Classical Mechanics," Addison-Wesley (1959).

Grading

Grading               400 level         500 level                             Deadlines

Midterm exam    35%                  30%                          Tuesday,  October 31st;    16:40-18:30

Homework           30%                   20%                          HW to be submitted to:     TBA

Project                                               20%                         Presentation (Optional) :  November, 16th, 2023
                                                                                                            Report:                                         November 30th, 2023

Final Exam     35%                   30%                     Tuesday,  December 5th,     17:30-19:20

       A     (95-100)    
      A-    (90-94)    
      B+   (85-89)    
      B      (80-84)    
      B-    (75-79)     
      C+   (70-74)    
      C     (65-69)    
      C-    (60-64)