Unit 11 and 12 - Thermo and Electro Chemistry

Learning Targets

LO 5.3 The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions.

LO 5.12 The student is able to use representations and models to predict the sign and relative magnitude of the entropy change associated with chemical or physical processes.

LO 5.13 The student is able to predict whether or not a physical or chemical process is thermodynamically favored by determination of (either quantitatively or qualitatively) the signs of both ΔH° and ΔS°, and calculation or estimation of ΔG° when needed.

LO 5.14 The student is able to determine whether a chemical or physical process is thermodynamically favorable by calculating the change in standard Gibbs free energy.

LO 5.15 The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable.

LO 5.16 The student can use LeChatelier’s principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product.

LO 5.17 The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction.

LO 5.18 The student can explain why a thermodynamically favored chemical reaction may not produce large amounts of product (based on consideration of both initial conditions and kinetic effects), or why a thermodynamically unfavored chemical reaction can produce large amounts of product for certain sets of initial conditions.

LO 6.25 The student is able to express the equilibrium constant in terms of ΔG° and RT and use this relationship to estimate the magnitude of K and, consequently, the thermodynamic favorability of the process.

LO 5.12 The student is able to use representations and models to predict the sign and relative magnitude of the entropy change associated with chemical or physical processes.

LO 5.13 The student is able to predict whether or not a physical or chemical process is thermodynamically favored by determination of (either quantitatively or qualitatively) the signs of both ΔH° and ΔS°, and calculation or estimation of ΔG° when needed.

LO 5.14 The student is able to determine whether a chemical or physical process is thermodynamically favorable by calculating the change in standard Gibbs free energy.

LO 5.15 The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable.

LO 5.16 The student can use LeChatelier’s principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product.

LO 5.17 The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction.

LO 5.18 The student can explain why a thermodynamically favored chemical reaction may not produce large amounts of product (based on consideration of both initial conditions and kinetic effects), or why a thermodynamically unfavored chemical reaction can produce large amounts of product for certain sets of initial conditions.

LO 3.12 The student can make qualitative or quantitative predictions about galvanic or electrolytic reactions based on half-cell reactions and potentials and/or Faraday’s laws.

LO 3.13 The student can analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.