Contents
Crystal Structures:
Spacegroup: Pna21 (or Pbn21 with current axes choice).
(NOTE: For the crystal modeling purposes, select the spacegroup as Pbn21 )
Point group: C2v
Lattice constants:
[2]
Wyckoff positions
Hypothetical alternative structure; space group Pmc21 [8],[15]
Also disordered wurtzite structure.[14]
Synthesis and growth methods
poly crystalline powder synthesis: Maunaye and Lang in 1970 [16] using the reaction
3 Zn2GeO4+8NH3→3ZnGeN2 +N2+3Zn+12 H2O at 700-650 0C.
polycrystalline film growth, Larson et al. [4] (1974) using a CVD process exposing the metals to HCl-N2 gas at 550 C for Zn and 950 C for Ge and subsequently mixing with NH3/N2 atmosphere and deposited at 850 C on sapphire using the reaction ZnCl2+GeCl4+2NH3->ZnGeN2+6HCl
high pressure bulk growth Endo et al. (1992) [17] starting from Zn3N2+Ge3N4 6 GPa and 1000 0C
MOCVD growth Zhu et al. [18] (1999) precursors: diethylZn and germane, NH3, substrates: r -plane and c-plane saphhire with GaN buffer layer
Misaki et al.[ 19] remote plasma enhanced MOCVD
Kikkawa and Morisaka [20] RF-sputtering on Si
Vapor liquid solid growth Du et al. [21]
Electronic band structure.
Band gap:
The band gap is direct at Gamma.
Effective masses:
Conduction band minimum:
mcx=0.22, mcy=0.20, mcz=0.15 [2]
Valence band maximum splittings and effective masses:
[2]
Figures :
Figure 1: Band structure of ZnGeN2. From data published in [2].
Figure 2: Band structure near valence band maximum [2].
Figure 3: Density of states and partial density of states.[2]
Vibrational properties
There are 12 modes of a2, 11 of a1, b1 and b2 symmetry.
All modes are Raman active. The a1, b1, b2 are IR active and exhibit LO-TO splitting.
The Raman tensors for a1 have xx, yy, zz components, for a2, xy, for b1 xz and for b2 yz components with x||a, y||b, z||c.
a1 is IR active for z polarization E||c
b1 is IR active for x polarization E||a
b2 is IR active for y polarization E||b
Table 1: a2 modes frequencies in cm-1
calc. A: [7] abinit, Fritz-Haber-Institute pseudopotential,M. Fuchs and M. Scheffler, Comput. Phys. Commun.119,67(1999).
calc. B: [8] abinit, HGH pseudopotential, C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev.B 58, 3641 (1998).
Expt. : [8] Raman on platelets
Table 2: a1 mode frequencies in cm-1.
Calc.A : [7] abinit, Fritz-Haber-Institute pseudopotential
Calc. B: [8] abinit, HGH pseudopotential
Expt. 1: [9] Raman on needles
Expt. 2: [8] Raman on platelets
T: tranverse, L: longitudinal
* this mode was not identified in this paper but can be seen in the spectrum
Table 3: b1 modes in cm-1.
Calc. A: [7], Calc. B:[8]
Table 4: b2 modes in cm-1
Calc. A: [7], Calc. B:[8]
Expt. [9] Raman on needles with crossed polarizers
Born effective charge tensors.
Raman Spectra
Predicted Raman spectra and Raman intensities can be found in [10], [11].
Predicted Raman spectra for Pmc21 structure can be found in [11].
Measured Raman spectra for needles can be found in [9].
Measured Raman spectra for polycrystalline material can be found in [9] and in [12].
Elastic Properties
Bulk moduli and pressure derivative
Elastic stiffness constants Cij(Mbar=100GPa)
Elastic compliances Sij (Mbar-1)
Reference: [13]
Piezo-electric constants and spontaneous polarization (cm-2)
nx
2.273
ny
2.289
nz
2.393
Reference: [10]
Non-linear optical coefficients.
Second order non-linear optics coefficients (pm/V)
d15=d31
-2.63
d34=d32
-3.17
d33
6.98
Reference:[13]
Linear electro-optical coefficients (pm/V)
References:
[1]. M. Wintenberger, M. Maunaye, and Y. Laurent, Mat. Res. Bull. 8, 1049 (1973).
[2]. A. Punya, W. R. L. Lambrecht, and M. van Schilfgaarde, Phys. Rev. B 84, 165204 (2011).
[4]. W. L. Larson, H. P. Maruska, and A. Stevenson, J. Electrochem. Soc. 121, 1683 (1974).
[7]. W. R. L. Lambrecht, E. Alldredge, and K. Kim, Phys. Rev. B 72, 155202 (2005).
[8]. E. W. Blanton, M. Hagemann, K. He, J. Shan, W. R. L. Lambrecht, and K. Kash, unpublished
[9]. T. J. Peshek, T. R. Paudel, K. Kash, and W. R. L. Lambrecht, Phys. Rev. B 77, 235213 (2008)
[10]. T. R. Paudel and W. R. L. Lambrecht, Phys. Rev. B 78,115204 (2008).
[11]. M. Hagemann, C. Bhandari and W. R. L. Lambrecht, Solid State Commun. 233, 46 (2016).
[13]. T. R. Paudel, W. R. L. Lambrecht, Phys. Rev. B 79, 245205 (2009).
[16]. M. Maunaye and J. Lang, Mat. Res. Bull. 5, 793-796 (1970).
[17]. T. Endo, Y. Sato, H. Takizawa, M. Shimada, J. Mater. Sci. Lett. 11, 424 (1992).
[18]. L. D. Zhu, P. H. Maruska, P. E. Norris, P. W. Yip and L. O. Bouthillette, MRS Internet J. Nitride Semiconductor Res.4S1:G3.8 (1999)
[19]. T. Misaki, A. Wakahara, H. Okada, A. Yoshia, J. Cryst. Growth 260,1049 (2004)
[20]. S. Kikkawa abd G. Morisaka, Solid State Commun. 112, 513 (1999)
[21]. K. Du, C. Bekele, C. C. Hayman, J. C. Angus, P. Pirouz and K. Kash, J. Cryst. Growth 310, 1057 (2008).