⭐ Connecting Measurement to Essential Key Concepts ⭐️
Exploring Measurement offers authentic opportunities to revisit the Essential Key Concepts of Decimal Reasoning and Operations and Proportional Reasoning:
B1.7 → Read, represent, compare, and order decimal tenths
Students interpret calues like 0.2 L or 0.5 kg, strengthening their sense of tenths in metric contexts
B1.9 → Equivalences among fractions and decimal tenths
Understanding that 1/2 L = 0.5 L supports translating between fractions, decimals, and metric measurement
C1.1 → Identify and describe repeating and growin patterns
Recognizing a 4 x 6 grid forms a pattern of rows and columns reflects growing arrays
C1.3 → Determine pattern rules
From a 4x6 array yielding 24 squares, students infer the rule area = length x width
E2 Measurement: compare, estimate, and determine measurements in various contexts
E2.1 explain the relationships between grams and kilograms as metric units of mass, and between litres and millilitres as metric units of capacity, and use benchmarks for these units to estimate mass and capacity
E2.2 use metric prefixes to describe the relative size of different metric units, and choose appropriate units and tools to measure length, mass, and capacity
E2.3 solve problems involving elapsed time by applying the relationships between different units of time
E2.5 use the row and column structure of an array to measure the areas of rectangles and to show that the area of any rectangle can be found by multiplying its side lengths
E2.6 apply the formula for the area of a rectangle to find the unknown measurement when given two of the three
Mathematical Modelling is a key process expectation that connects across multiple strands. Opportunities to engage students in modelling may arise naturally within rich, real-world contexts — for example, in financial literacy (e.g., creating a budget), measurement (e.g., designing a garden space), or data (e.g., interpreting results from a student survey).
We recommend using open-ended tasks where students define problems, make decisions, and justify their thinking — even in informal ways — as early steps toward developing modelling skills.
See our Mathematical Modelling page for more information.
Process Expectation Focus: Reflecting, Connecting
During this topic, pay attention to the students' ability to maintain positive motivation and perseverance.
Do students have strategies when they are stuck? (e.g. attempt or test out different approaches, use resources in the room, ask for help from a friend)
Are students open to learning from mistakes?
Do students recognize what is working well for them, and what might need to be changed?
Concrete Learning Resources Tools:
centicubes
length measuring tools (metre stick, ruler, etc)
capacity measuring tools (beakers, graduated cylinder, etc)
grid paper
tiles
pattern blocks
snap cubes
Virtual Learning Resources and Tools: