Papers / 論文
更新日時:2025年10月8日
※ 各論文の日本語での概要については [ こちらへ ]
[ 18 ] Y. Ichida, Traveling waves for a Fisher-KPP equation with power nonlinear degenerate diffusion, J . Elliptic Parabol. Equ., in press.
[ Jounal ] (Doi: 10.1007/s41808-025-00392-x) ※ Corresponding author
[ 17 ] Y. Ichida, R. Yamada, S. Kato, Y. Kamaya, M. Kosuge, M. Aizawa, T.O. Sakamoto, S. Yazaki, A simple mathematical model for evaluation of non-fragmentation property of injectable calcium-phosphate cement, Sci Rep 15 (2025), 21571.
[ Jounal ] (Doi: 10.1038/s41598-025-06039-0)[ Source code へのアクセスはこちら ] ※ Corresponding author
[ 16 ] Y. Ichida, Classification of weak and unbounded traveling wave solutions for a Porous-Fisher-KPP equation, SN Partial differ. Equ. Appl. 6 (2025), No. 3, Paper No. 25, 24 pp.
[ Jounal ] (Doi: 10.1007/s42985-025-00335-0) ※ Corresponding author
[ 15 ] Y. Ichida, S. Motonaga, Geometric structure of the traveling waves for 1D degenerate parabolic equation, J. Dyn.Differ.Equations xxx (xxxx), no. xxx, xxx--xxx.
[ Jounal ] (Doi: 10.1007/s10884-024-10389-0) ※ Corresponding author
[ 14 ] Y. Ichida, Y. Nakata, Global dynamics of a simple model for wild and sterile mosquitoes, Math. Biosci. Eng., 21 (2024), issue 9, pp.7016--7039.
[ Jounal ] (Doi: 10.3934/mbe.2024308) ※ Corresponding author
[ 13 ] Y. Ichida, T.O. Sakamoto, Classification of nonnegative traveling wave solutions for certain 1D degenerate parabolic equation and porous medium type equation, Discrete Contin. Dyn. Syst., 44 (2024), no. 8, pp. 2342 -- 2367.
[ Jounal ] (Doi: 10.3934/dcds.2024030) available on arXiv: 2304.00802 [ arXiv ] ※ Corresponding author
[ 12 ] Y. Ichida, A characterization of nonnegative stationary solutions for certain 1D degenerate parabolic equations and their applications, Commun. Pure Appl. Anal. 23 (2024), no. 6, pp. 873--894.
[ Journal ] (Doi: 10.3934/cpaa.2024038)※ Corresponding author
[ 11 ] Y. Ichida, T.O. Sakamoto, Geometric approach to the bifurcation at infinity: A case study, Qual. Theory Dyn. Syst. 23 (2024), no. 3, Paper No. 109, 24 pp.
[ Journal ] (Doi: 10.1007/s12346-024-00966-5)※ Corresponding author
[ 10 ] Y. Ichida, Radially symmetric stationary solutions for certain chemotaxis systems in higher dimensions: a geometric approach, Discrete Contin. Dyn. Syst., 43 (2023), no. 5, pp. 1975--2001.
[ Journal ] (Doi: 10.3934/dcds.2022188) ※ Corresponding author
[ 9 ] Y. Ichida, Classification of nonnegative traveling wave solutions for the 1D degenerate parabolic equations, Discrete Contin. Dyn. Syst., Ser. B, 28 (2023), no. 2, pp. 1116--1132.
[ Journal ] (Doi: 10.3934/dcdsb.2022114) ※ Corresponding author
[ 8 ] Y. Ichida, Traveling waves with singularities in a damped hyperbolic MEMS type equation in the presence of negative powers nonlinearity, Electron. J. Differ. Equ, 2023 (2023), no. 5, 1--20.
[ Journal ] ※ Corresponding author
[ 7 ] Y. Ichida, T.O. Sakamoto, Radially symmetric stationary solutions for a MEMS type reaction-diffusion equation with fringing field, Nonlinearity, 36 (2023), no. 1, pp. 71--109.
[ Journal ] (Doi: 10.1088/1361-6544/ac9bc3)
[ 6 ] Y. Ichida, T.O. Sakamoto, Stationary solutions for a 1D pde problem with gradient term and negative powers nonlinearity, J . Elliptic Parabol. Equ, 8 (2022), no. 2, pp. 885--918.
[ Journal ] (Doi : 10.1007/s41808-022-00180-x) ※ Corresponding author
[ 5 ] Y. Ichida, On global behavior of a some SIR epidemic model based on the Poincar\'e compactification, JSIAM Lett. 14 (2022), pp. 65--68.
Open access : [ Journal ] (Doi: 10.14495/jsiaml.14.65) available on arXiv: 2201.05321 [ arXiv ] ※ Corresponding author
[ 4 ] Y. Ichida, T.O. Sakamoto, Radial symmetric stationary solutions for a MEMS type reaction-diffusion equation with spatially dependent nonlinearity, Jpn. J. Ind. Appl. Math. 38 (2021), no.1, pp. 297--322.
[ Journal ] (Doi: 10.1007/s13160-020-00438-8)
[ 3 ] Y. Ichida, K. Matsue, T.O. Sakamoto, A refined asymptotic behavior of traveling wave solutions for degenerate nonlinear parabolic equations, JSIAM Lett. 12 (2020), pp. 65--68
Open access : [ Journal ] (Doi: 10.14495/jsiaml.12.65) available on arXiv: 2008.00174 [arXiv] ※ Corresponding author
[ 2 ] Y. Ichida, T.O. Sakamoto, Traveling wave solutions for degenerate nonlinear parabolic equations, , J. Elliptic Parabol. Equ. 6 (2020), no.2, pp. 795--832.
[ Journal ] (Doi : 10.1007/s41808-020-00080-y) [ Correction ]
[ 1 ] Y. Ichida, T. O. Sakamoto, Quasi traveling waves with quenching in a reaction-diffusion equation in the presence of negative powers nonlinearity. Proc. Japan Acad. Ser.A Math Sci. 96 (2020), no.1, pp. 1--6.
Open access : [ Journal ] (Doi : 10.3792/pjaa.96.001)
[ 3 ] J.-S. Guo, Y. Ichida, C.-C. Wu, S. Yotsutani, Bifurcation diagram for boundary value problem arising in the polarized ionic conductor, submitted.
[ 2 ] Y. Ichida, Geometric structure of stationary problem for spatial 1D self-diffusion equation with logistic growth, submitted. available on arXiv: 2509.24752 [ arXiv ]
[ 1 ] Y. Ichida, Traveling waves in the spatial 1D Fisher-KPP equation with Allee effect, submitted.
Y. Ichida, H. Izuhara, Traveling waves of 1D positive/negative chemotaxis system with logistic term: a geometric approach, in preparation.
Y. Ichida, H. Izuhara, Classification of non-negative and sign-changing traveling waves for spatial 1D self-diffusion equation with logistic growth, in preparation.
Y. Ichida, D. Yamane, xxx, in preparation.
Y. Ichida, D. Yamane, xxx, in preparation.
[ 4 ] 市田 優,微分方程式の無限遠ダイナミクスといくつかの応用,数学と現象 in 宮崎,2024, 11p. [ HPへ ]
[ 3 ] 市田 優,坂元 孝志,MEMS型反応拡散方程式へのポアンカレ型コンパクト化の応用(偏微分方程式の幾何学的様相),京都大学数理解析研究所講究録(RIMS Kokyuroku) No. 2251 (2023.5), 63--73. [ HPへ ]
[ 2 ] 市田 優,無限遠ダイナミクスが導くある走化性方程式系の球対称定常解,第43回発展方程式若手セミナー報告集 (2022),33--40.
[ 1 ] 市田 優,相空間のコンパクト化に基づく空間1次元退化放物型方程式における非負の進行波解の分類,第18回 数学総合若手研究集会:数学の交叉点,Hokkaido University Technical Report Series in Mathematics(北海道大学数学講究録)182 (2022), 737--745. [ HPへ ]
[ 2 ] 市田 優,数学の防災,防災の数学,『理』(コトワリ),76号(2025年10月),関西学院大学出版会,4--5.
[ 1 ] 市田 優,数式たちは防災している!? 数理モデリング,力学系理論の観点からの防災数学 ,数学セミナー,749号(2024年3月号),日本評論社,15 -- 17.
[ 1 ] 2024/10/4公開「月と窓」関西学院大学ウェブ広報誌,"いつかは自然災害の予測も.身の回りに潜む"災い"を数理モデルで予測・制御する「防災数学」への期待":[ 月と窓のHP ]