Swarts Lab
Publications
Publications
See publications on PubMed
62. J. J. Lee, D. H. Swanson, S.-K. Lee, S. Dihardjo, G. Y. Lee, S. Gelle, H. J. Seong, E. R. M. Bravo, Z. E. Taylor, M. S. Van Nieuwenhze, A. Singh, J.-S. Lee, S. Eum, S. Cho, B. M. Swarts, H. Eoh*. Trehalose catalytic shift inherently enhances phenotypic heterogeneity and multidrug resistance in Mycobacterium tuberculosis. Nat. Commun., 2025, 16, 6442.
61. C. Santamaria, K. J. Biegas, P. N. Lim, J. Cabral, C. Y. Kim, J. R. Lee, I.V. Gaidhane, C. Papson, K. Gomard-Henshaw, A. C. Rothchild, B. M. Swarts, M. S. Siegrist*. Trehalose dimycolate inhibits phagosome maturation and promotes intracellular M. tuberculosis growth via noncanonical SNARE interaction. Proc. Natl. Acad. Sci. U. S. A., 2025, 122, e2423292122.
60. P. Dzigba, G. A. T. Dekhtyar, M. J. Hartman, K. J. Winstead-Leroy, M. C. Greenlee-Wacker*, and B. M. Swarts*. An antibody-recruiting molecule enhances Fcγ receptor-mediated uptake and killing of mycobacterial pathogens by macrophages. ACS Infect. Dis., 2025, DOI: 10.1021/acsinfecdis.5c00097.
59. U. S. S. Kumbalathara A.D., P. C. B. Halicki, K. Kalera, B. M. Swarts, K. H. Rohde*, S. J. Sucheck*. Synthesis and evaluation of trehalose-Pks13 inhibitor conjugates targeting mycobacteria. Carbohydr. Res., 2025, 553, 109506.
58. K. C. Agu,‡ N. Banahene,‡ C. Santamaria, C. Y. Kim, J. Cabral, K. J. Biegas, C. Papson, A. D. Kruskamp, M. S. Siegrist, B. M. Swarts*. A photoactivatable free mycolic acid probe to investigate mycobacteria–host interactions. ACS Infect. Dis., 2025, 11, 1233–1245. ‡Equal contribution.
Highlighted in ACS Axial
57. P. Dzigba, M. A. Seth, M. C. Greenlee-Wacker*, and B. M. Swarts*. Redirecting the host immune response to bacterial infection with antibody-recruiting molecules (ARMs). Curr. Opin. Chem. Biol. 2025, 86, 102585.
56. A. Zigli and B. M. Swarts*. Pumping iron for tuberculosis diagnostics. ACS Cent. Sci., 2025, 11, 190–192.
55. A. D. Marten, D. P. Haslitt, C. A. Martin, D. H. Swanson, K. Kalera, U. G. Johnson, B. M. Swarts, M. J. Conway*. Trehalose supports the growth of Aedes aegypti cells and modifies gene expression and dengue virus replication. PLoS Pathog., 2025, 1012795.
54. J. Sun, Y. Zhang, J. A. Adams, C. B. Higgins, S. C. Kelly, H. Zhang, K. Y. Cho, U. G Johnson, B. M. Swarts, S.-I. Wada, G. J. Patti, L. P. Shriver, B. N. Finck, E. D. Herzog, B. J. DeBosch. Hepatocyte Period 1 dictates oxidative substrate selection independent of the core circadian clock. Cell Rep., 2024, 43, 114865.
53. S. C. Kelly, C. B. Higgins, J. Sun, J. A. Adams, Y. Zhang, S. Ballentine, Y. Miao, X. Cui, M. Milewska, I. Wandzik, J. Yoshino, B. M. Swarts, S. Wada, B. J. DeBosch*. Hepatocyte MMP14 mediates liver and inter-organ inflammatory responses to diet-induced liver injury. PNAS Nexus, 2024, 3, pgae357.
52. N. Banahene, T. M. Peters-Clarke, K. J. Biegas, E. Shishkova, E. M. Hart, A. C. McKitterick, N. H. Kambitsis, U. G. Johnson, T. G. Bernhardt, J. J. Coon, and B. M. Swarts*. Chemical proteomics strategies for analyzing protein lipidation reveal the bacterial O-mycoloylome. J. Am. Chem. Soc. 2024, 146, 12138–12154.
51. K. Kalera, R. Liu, J. Lim, R. Pathirage, D. H. Swanson, U. G. Johnson, A. I. Stothard, J. J. Lee, A. W. Poston,‡ P. J. Woodruff, D. R. Ronning, H. Eoh*, and B. M. Swarts*. Targeting Mycobacterium tuberculosis persistence through inhibition of the trehalose catalytic shift. ACS Infect. Dis. 2024, 10, 1391–1404.
‡This work is dedicated to Anne W. Poston (1970–2022).
50. I. V. Gaidhane, K. J. Biegas, H. E. Erickson, P. Agarwal, Y. S. Chhonker, D. R. Ronning, and B. M. Swarts*. Chemical remodeling of the mycomembrane with chain-truncated lipids sensitizes mycobacteria to rifampicin. Chem. Commun. 2023, 59, 13859–13862.
49. P. Dzigba, A. K. Rylski, I. J. Angera, N. Banahene, H. W. Kavunja, M. C. Greenlee-Wacker*, and B. M. Swarts*. Immune targeting of mycobacteria through cell surface glycan engineering. ACS Chem. Biol., 2023, 18, 1548–1556.
48. H. Hodges, K. Obeng, C. Avanzi, A. P. Ausmus, S. K. Angala, K. Kalera, Z. Palcekova, B. M. Swarts*, and M. Jackson*. Azido inositol probes enable metabolic labeling of inositol-containing glycans and reveal an inositol importer in mycobacteria. ACS Chem. Biol., 2023, 18, 595–604.
47. N. Banahene,‡ D. M. Gepford,‡ K. J. Biegas, D. H. Swanson, Y.-P. Hsu, B. A. Murphy, Z. E. Taylor, I. Lepori, M. S. Siegrist, A. Obregón-Henao, M. S. VanNieuwenhze, and B. M Swarts*. Far-red molecular rotor fluorogenic trehalose probe for live mycobacteria detection and drug-susceptibility testing. Angew. Chem. Int. Edit., 2023, 62, e202213563. ‡Equal contribution.
Selected as a hot paper
46. M. J. Conway*, D. P. Haslitt, and B. M. Swarts. Targeting Aedes aegypti metabolism with next-generation insecticides. Viruses, 2023, 15, 469.
45. K. R. Gupta, C. M. Gwin, K. C. Rahlwes, K. J. Biegas, C. Wang, J. H. Park, J. Liu, B. M. Swarts, Y. S Morita, and E. H. Rego*. An essential periplasmic protein coordinates lipid trafficking and is required for asymmetric polar growth in mycobacteria. eLife, 2022, 11, e80395.
44. A. A. Pohane,‡ Devin J. Moore,‡ I. Lepori, R. A. Gordon, T. O. Nathan, D. M. Gepford, H. W. Kavunja, I. V. Gaidhane, B. M. Swarts*, and M. S. Siegrist*. A bifunctional chemical reporter for in situ analysis of cell envelope glycan recycling in mycobacteria. ACS Infect. Dis., 2022, 8, 2223–2231. ‡Equal contribution.
43. M. R. Babu Sait, H. Koliwer-Brandl, J. A. Stewart, B. M. Swarts, M. Jacobsen, T. R. Ioerger, and R. Kalscheuer*. PPE51 mediates uptake of trehalose across the mycomembrane of Mycobacterium tuberculosis. Sci. Rep. 2022, 122, 3336–3413.
42. N. Banahene, H. W. Kavunja, and B. M. Swarts*. Chemical reporters for bacterial glycans: development and applications. Chem. Rev. 2022, 122, 3336–3413.
41. N. Banahene and B. M. Swarts*. Metabolic Labeling of Live Mycobacteria with Trehalose-Based Probes in Mycobacteria Protocols, Fourth Edition; T. Parish and A. Kumar, Eds.; Humana Press: Totowa, NJ, 2021, 385–398.
Selected for book cover image
40. K. J. Biegas and B. M. Swarts*. Chemical probes for tagging mycobacterial lipids. Curr. Opin. Chem. Biol. 2021, 65, 57–65.
39. A. A. Pohane, C. R. Carr, J. Garhyan, B. M. Swarts, and M. S. Siegrist.* Trehalose recycling promotes energy-efficient biosynthesis of the mycobacterial cell envelope, mBio. 2021, 12, e02801–20.
38. H. W. Kavunja, K. J. Biegas, N. Banahene, J. A. Stewart, B. F. Piligian, J. M. Groenevelt, C. E. Sein, Y. S. Morita, M. Niederweis, M. S. Siegrist, and B. M. Swarts*. Photoactivatable glycolipid probes for identifying mycolate–protein interactions in live mycobacteria, J. Am. Chem. Soc. 2020, 142, 7725–7731.
37. A. P. Ausmus, M. Hogue, J. L. Snyder, S. R. Rundell, K. M. Bednarz, N. Banahene, B. M. Swarts*. Ferrier carbocyclization-mediated synthesis of enantiopure azido inositol analogues, J. Org. Chem. 2020, 85, 3182–3191.
36. K. Kalera, A. I. Stothard, P. J. Woodruff, and B. M. Swarts*. The role of chemoenzymatic synthesis in advancing trehalose analogues as tools for combatting bacterial pathogens, Chem. Commun. 2020, 11528–11547.
35. Y. Zhang, N. Shaikh, J. L. Ferey, U. D. Wankhade, S. V. Chintapalli, C. B. Higgins, J. R. Crowley, M. R. Heitmeier, A. I. Stothard, B. Mihi, M. R. Good, T. Higashiyama, B. M. Swarts, P. W. Hruz, K. Shankar, P. I. Tarr, B. J. DeBosch*. Lactotrehalose, an analog of trehalose, increases energy metabolism without promoting Clostridioides difficile infection in mice, Gastroenterology, 2020, 158, 1402–1416.e2.
34. A. D. Marten, A. I Stothard, K. Kalera, B. M. Swarts, M. J. Conway*. Validamycin A Delays Development and Prevents Flight in Aedes aegypti (Diptera: Culicidae), J. Med. Entymol. 2020, 57, 1096–1103.
33. J. J. Lee, S.-K. Lee, N. Song, T. O. Nathan, B. M. Swarts, S. Y. Eum, S. Ehrt, S.-N. Cho, H. Eoh*. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis, Nat. Commun. 2019, 10, 2928.
Selected as an Editors’ Highlight
32. N. D. Danielson,‡ J. Collins,‡ A. I. Stothard, Q. Q. Dong, K. Kalera, P. J. Woodruff, B. J. DeBosch, R. A. Britton, and B. M. Swarts*. Degradation-resistant trehalose analogues block utilization of trehalose by hypervirulent Clostridioides difficile. Chem. Commun. 2019, 55, 5009–5012. ‡Equal contribution.
31. Y. Zhang, C. B. Higgins, H. M. Fortune, P. Chen, A. I. Stothard, A. L. Mayer, B. M. Swarts, B. J. DeBosch*. Hepatic Arginase 2 (Arg2) is sufficient to convey the therapeutic metabolic effects of fasting. Nat. Commun. 2019, 10, 1587.
30. N. J. Holmes,‡ H. W. Kavunja,‡ Y. Yang, B. D. Vannest, C. N. Ramsey, D. M. Gepford, N. Banahene, A. W. Poston, Brent F. Piligian, D. R. Ronning, A. K. Ojha, and B. M. Swarts*. A FRET-based fluorogenic trehalose dimycolate analogue for probing mycomembrane-remodeling enzymes of mycobacteria. ACS Omega. 2019, 4, 4348–4359. ‡Equal contribution.
29. T. J. Fiolek,‡ N. Banahene,‡ H. W. Kavunja, N. J. Holmes, A. K. Rylski, A. A. Pohane, M. S. Siegrist, and B. M. Swarts*. Engineering the mycomembrane of live mycobacteria with an expanded set of trehalose monomycolate analogues. ChemBioChem. 2019, 20, 1282–1291. ‡Equal contribution.
28. S. Peña,‡ A. Y.-T. Huang,‡ H. W. Kavunja, A. W. Poston, B. Salinas, M. Desco, C. Drake, P. J. Woodruff, J. J. Vaquero,* and B. M. Swarts*. Chemoenzymatic radiosynthesis of 2-deoxy-2-[18F]fluoro-d-trehalose ([18F]-2-FDTre): A PET radioprobe for in vivo tracing of trehalose metabolism. Carbohydr. Res. 2019, 472, 16–22. ‡Equal contribution.
27. C. B. Higgins, Y. Zhang, H. Fujiwara, A. L. Mayer, M. J. Graham, A. I. Stothard, B. M. Swarts, and B. J. DeBosch*. Hepatocyte ALOXE3 is induced during the murine adaptive fasting response and enhances insulin sensitivity by activating hepatic PPAR-gamma. JCI Insight, 2018, DOI: 10.1172/jci.insight.120794
26. A. Heredia-García, A. A. Pohane, E. Melzer, C. R. Carr, T. J. Fiolek, S. R. Rundell, H. Chuin Lim, J. C. Wagner, Y. S. Morita, E. J. Rubin, B. M. Swarts, and M. S. Siegrist*. Peptidoglycan precursor synthesis along the sidewall of pole-growing mycobacteria, eLife, 2018, e37243.
25. J. M. Groenevelt, L. M. Meints, A. I. Stothard, A. W. Poston, T. J. Fiolek, D. Finochetti, V. Mulholland, P. J. Woodruff, and B. M. Swarts*. Chemoenzymatic synthesis of trehalosamine, an aminoglycoside antibiotic and precursor to mycobacterial imaging probes. J. Org. Chem. 2018, 83, 8662–8667.
24. J. M. Wolber,‡ B. L. Urbanek,‡ L. M. Meints, B. F. Piligian, I. C. Lopez-Casillas, K. M. Zochowski, P. J. Woodruff, and B. M. Swarts*. The trehalose-specific transporter LpqY-SugABC is required for antimicrobial and anti-biofilm activity of trehalose analogues in Mycobacterium smegmatis, Carbohydr. Res. 2017, 450, 60–66. ‡Equal contribution.
23. P.-H. Chen, T. J. Smith, J. Wu, P. F. Siesser, F. Khan, M. Hogue, E. Soderblom, F. Tang, J. R. Marks, M. B. Major, B. M. Swarts, M. Boyce,* and J.-T. Chi*. Glycosylation of KEAP1 links nutrient sensing to redox stress signaling, EMBO J. 2017, DOI: 10.15252/embj.201696113.
22. M. K. O'Neill,‡ B. F. Piligian,‡ C. D. Olson, P. J. Woodruff, and B. M. Swarts*. Tailoring trehalose for biomedical and biotechnological applications. Pure Appl. Chem., 2017, 89, 1223–1250. ‡Equal contribution.
21. L. M. Meints, A. W. Poston, B. F. Piligian, C. D. Olson, K. S. Badger, P. J. Woodruff, and B. M. Swarts*. Rapid one-step enzymatic synthesis and all-aqueous purification of trehalose analogues, J. Vis. Exp., 2017, (120), e54485.
20. H. W. Kavunja, B. F. Piligian, T. J. Fiolek, H. N. Foley, T. O. Nathan and B. M. Swarts*. A chemical reporter strategy for detecting and identifying O-mycoloylated proteins in Corynebacterium, Chem. Commun., 2016, 52, 13795–13798.
19. S. R. Rundell,‡ Z. L. Wagar,‡ L. M. Meints, C. D. Olson, M. K. O'Neill, B. F. Piligian, A. W. Poston, R. J. Hood, P. J. Woodruff, and B. M. Swarts*. Deoxyfluoro-D-trehalose (FDTre) analogues as potential PET probes for imaging mycobacterial infection, Org. Biomol. Chem. 2016, 14, 8598–8609. ‡Equal contribution.
18. H. N. Foley,‡ J. A. Stewart,‡ H. W. Kavunja, S. R. Rundell, and B. M. Swarts*. Bioorthogonal chemical reporters for selective in situ probing of mycomembrane components in mycobacteria, Angew. Chem. Int. Edit., 2016, 55, 2053–2057. ‡Equal contribution.
17. J. A. Stewart,‡ B. F. Piligian,‡ S. R. Rundell, and B. M. Swarts*. A trifunctional cyclooctyne for modifying azide-labeled biomolecules with photocrosslinking and affinity tags, Chem. Commun., 2015, 51, 17600-17603 ‡Equal contribution.
16. M. S. Siegrist, B. M. Swarts, D.M. Fox, S.A. Lin, and C. R. Bertozzi*. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface, FEMS Microbiol. Rev., 2015, 39, 184–202.
15. B. L. Urbanek,‡ D. C. Wing,‡ K. S. Haislop, C. J. Hamel, R. Kalscheuer, P. Woodruff, and B. M. Swarts*. Chemoenzymatic synthesis of trehalose analogues: rapid access to chemical probes for investigating mycobacteria, ChemBioChem, 2014, 15, 2066–2070. ‡Equal contribution.
14. J. A. Stewart, C. J. Wilson, and B. M. Swarts*. Effect of azide position on the rate of azido glucose–cyclooctyne cycloaddition, J. Carbohydr. Chem., 2014, 33, 408–419.
13. B. M. Swarts*. Recent advances in the chemical synthesis of glycosylphosphatidylinositols (GPIs): expanding synthetic versatility for investigating GPI biology, J. Carbohydr. Chem., 2013, 32, 275–300.
12. K. E. Beatty, M. Williams, B. L. Carlson, B. M. Swarts, P. D. van Helden, C. R. Bertozzi. Sulfatase-activated fluorophores for rapid discrimination of mycobacterial species and strains, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 12911–12916.
11. B. M. Swarts, C. M. Holsclaw, J. C. Jewett, M. Alber, D. M. Fox, M. S. Siegrist, J. A. Leary, R. Kalscheuer, C. R. Bertozzi. Probing the mycobacterial trehalome with bioorthogonal chemistry, J. Am. Chem. Soc., 2012, 134, 16123–16126.
10. B. M. Swarts and Z. Guo. Chemical synthesis of glycosylphosphatidylinositol anchors, Adv. Carbohydr. Chem. Biochem., 2012, 67, 137–219.
9. S. Burgula,‡ B. M. Swarts,‡ and Z. Guo. Total synthesis of a glycosylphosphatidylinositol anchor of the human lymphocyte CD52 antigen, Chem. Eur. J., 2012, 18, 1194–1201. ‡Equal contribution.
8. Z. Wang, G.Wasonga, B. M. Swarts, and X. Huang. Chemoselective glycosylation of thioglycosyl donors in Carbohydrate chemistry: proven synthetic methods; Kovac, P., Ed. CRC Press, Taylor & Francis Group: Boca Raton, 2011, pp 47–53.
7. B. M. Swarts and Z. Guo. Chemical synthesis and functionalization of clickable glycosylphosphatidylinositol anchors, Chem. Sci. 2011, 2, 2342–2352.
6. B. M. Swarts and Z. Guo. Synthesis of glycosylphosphatidylinositol anchors bearing unsaturated lipid chains, J. Am. Chem. Soc., 2010, 132, 6648–6650.
5. Z. Wu, X. Guo, Q. Wang, B. M. Swarts, and Z. Guo. Sortase A-catalyzed transpeptidation of glycosylphosphatidylinositol derivatives for chemoenzymatic synthesis of GPI-anchored proteins, J. Am. Chem. Soc., 2010, 132, 1567–1571.
4. B. M. Swarts and Z. Guo. Carbohydrate-based antiviral vaccines in Carbohydrate-based vaccines and immunotherapies; Z. Guo and G.-J. Boons, Eds.; John Wiley & Sons, Inc.: Hoboken, 2009, pp 167–193.
3. X. Guo, Q. Wang, B. M. Swarts, and Z. Guo. Sortase-catalyzed peptide-glycosylphosphatidylinositol analog ligation, J. Am. Chem. Soc., 2009, 131, 9878–9879.
2. H. Hu, J. Xue, B. M. Swarts, Q. Wang, Q. Wu, and Z. Guo. Synthesis and Antibacterial activities of N-glycosylated derivatives of tyrocidine A, a macrocyclic peptide antibiotic, J. Med. Chem., 2009, 52, 2052–2059.
1. B. M. Swarts, Y.-C. Chang, H. Hu, and Z. Guo. Synthesis and CD structural studies of CD52 peptides and glycopeptides, Carbohydr. Res., 2008, 343, 28940–2902.