Исторические сведения
Геометрия - наука, изучающая формы, размеры и взаимное расположение геометрических фигур. Она возникла и развивалась в связи с потребностями практической деятельности человека.
Первые геометрические понятия возникли в доисторические времена. Разные формы материальных тел наблюдал человек в природе: формы растений и животных, гор и извилин рек, круга и серпа Луны…
Начало геометрии было положено в древности при решении практических задач. Со временем, когда накопилось большое количество геометрических фактов, у людей появилась потребность обобщения, выяснения зависимости одних элементов от других, установления логических связей и доказательств. Постепенно создавалась геометрическая наука.
Геометрические знания в объеме современного курса средней школы были изложены еще 2200 лет назад в “Началах” Евклида.
Конечно, изложенная в “Началах” наука геометрия не могла быть создана одним ученым. Известно, что Евклид в своей работе опирался на труды десятков предшественников, среди которых были Фалес и Пифагор, Демокрит и Гиппократ, Архит, Теэте. В своей книге Евклид дал полное математическое описание правильных многогранников. Он описывает структуру тетраэдра, октаэдра, куба, икосаэдра, додекаэдра в данном порядке.
История правильных многогранников уходит в глубокую древность. Начиная с 7 века до нашей эры в Древней Греции создаются философские школы, в которых происходит постепенный переход от практической к философской геометрии. Большое значение в этих школах приобретают рассуждения, с помощью которых удалось получать новые геометрические свойства. Одной из первых и самых известных школ была Пифагорейская, названная в честь своего основателя Пифагора. Отличительным знаком пифагорейцев была пентаграмма, на языке математики - это правильный невыпуклый или звездчатый пятиугольник. Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона (427-347 до н. э.) "Тимаус". Поэтому правильные многогранники также называются Платоновыми телами (хотя известны они были, задолго до Платона). Названия правильных многогранников пришли из Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник", "двенадцатигранник", "двадцатигранник". Тела Платона занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным. Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь.
Многогранники имеют красивые формы, например, правильные, полуправильные и звездчатые многогранники. Они обладают богатой историей, которая связана с именами таких ученых, как Пифагор, Евклид, Архимед.
С древнейших времен представления о красоте связаны с симметрией.
Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей.
Понятие многогранника. Платоновы тела.
Многогранником называется поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело.
Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней.
Выпуклый многогранник называется правильным, если все его грани — одинаковые правильные многоугольники и все многогранные углы при вершинах равны.
Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников.
Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Достаточно вспомнить знаменитые египетские пирамиды и самую известную из них – пирамиду Хеопса. Это правильная пирамида, в основании которой квадрат со стороной 233 м и высота которой достигает 146,5 м. Не случайно говорят, что пирамида Хеопса – немой трактат по геометрии.
В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.
Существует 5 видов правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.
Тетраэдр – представитель Платоновых тел, то есть правильных выпуклых многогранников. Поверхность тетраэдра состоит из четырех равносторонних треугольников, сходящихся в каждой вершине по три.
Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240°.
Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 270°.
Куб (гексаэдр) составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270°.
Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°. Два правильных многогранника - октаэдр и додекаэдр - строились при помощи других многогранников - куба и икосаэдра. Причем каждая вершина, скажем, октаэдра соответствовала некоторой вершине куба. То же самое можно сказать и о паре многогранников икосаэдр - додекаэдр.
Формула Эйлера для выпуклых многогранников.
Подтвердить это можно с помощью развертки выпуклого многогранного угла. Для того чтобы получить какой-нибудь правильный многогранник, в каждой вершине должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником. Сумма плоских углов многогранного угла должна быть меньше 360°, иначе никакой многогранной поверхности не получится. Перебирая возможные целые решения неравенств: 60к < 360, 90к < 360 и 108к < 360, можно доказать, что правильных многогранников ровно пять (к - число плоских углов, сходящихся в одной вершине многогранника).
Вершины + Грани - Рёбра = 2.
Формула связывает число вершин /В/, граней /Г/ и ребер /Р/ любого многогранника. Простота этой формулы заключается в том, что она не связана ни с расстоянием, ни с углами. Для того, чтобы определить число ребер, вершин и граней правильного многогранника, найдем сначала число к=2у-ху+2х, где х - число ребер, принадлежащих одной грани, у - число граней, сходящихся в одной вершине. Для нахождения количества граней, вершин и ребер правильного многогранника используем формулы. После этого нетрудно заполнить таблицу (приложение 1), в которой приведены сведения об элементах правильных многогранников:
Развертки правильных многогранников иллюстрируют величины плоских углов.
Тетраэдр
Правильный октаэдр
Правильный икосаэдр
Куб (гексаэдр)
Правильный додекаэдр
Иллюстрация доказательства Эвклида
И еще один вопрос возникает в связи с правильными многогранниками: можно ли ими заполнить пространство так, чтобы между ними не было просветов? Он возникает по аналогии с правильными многоугольниками, некоторыми из которых можно заполнить плоскость. Оказывается, заполнить пространство можно только с помощью одного правильного многогранника-куба. Пространство можно заполнить и ромбическими додекаэдрами.
Художник Сальвадора Дали. Картина «Тайная Вечеря».
Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра.