SLICING FUTURE INTERNET INFRASTRUCTURES
sfi2

OBJECTIVES

This research's leading technical and breakthrough emphasis is to develop a network slicing solution that provides orchestration and allocation of resources in multi-domain experimentation network infrastructures.

Machine learning techniques will assist slicing in multi-domain network infrastructures to provide near-automatic resource identification and allocation.

Research Topics

Multi-domain Slicing, Slice-as-a-Service, Experimental Testbed, ML-assisted Resource Orchestration, ML-assisted Resource Allocation, Self-driving Network, Energy Efficiency, Future Internet. 

institutions

Universidade Salvador - UNIFACS, Universidade de São Paulo - USP, Universidade Federal de Uberlândia - UFU, Universidade Federal do Rio de Janeiro - UFRJ, Pontifícia Universidade Católica do Rio Grande do Sul - PUC-RS, Universidade Federal do Rio Grande do Sul - UFRGS, Universidade Federal de Pernambuco - UFPE, Universidade Federal de Minas gerais - UFMG, Universidade Federal de Goiás - UFG, Universidade Federal Fluminense - UFU, Universidade Federal da Bahia - UFBA, Instituto Tecnológica da Aeronáutica - ITA, Universidade Federal do Espírito Santo - UFES, Universidade do Vale dos Sinos - UNISINOS.

funding

sfi2 general view

The technological evolution centered on the concepts of Software Defined Networks (SDN), Network Functions Virtualization (NFV), Cloud Computing, Internet of Things (IoT) and, more recently, on the fifth generation of mobile telecommunications networks, known as 5G, has caused great impact on the Internet. This impact comes not only from the creation of new technologies, communication protocols, security solutions, energy efficiency mechanisms and others, but also from the need to jointly operate this plethora of innovations with each other and with the legacy of the Internet. As a result, several experimentation environments with different scopes have emerged in Brazil, targeting at the research of different subsets of technologies, among them: FIBRE, experimentation of alternative architectures to the current Internet; FUTEBOL, experimentation in telecommunications networks involving optical and wireless communications; CloudNEXT, experimentation on cloud computing and bare-metal provisioning; FIWARE, future Internet-Based applications based on Internet of Things (IoT), Big Data and Cloud Computing; 5GINFIRE, experimentation in 5G networks, based on NFV and cloud usage; and finally NECOS, focused on the creation of slices that encompass different clouds with distributed resources. In this scenario, the main objective of this project is to provide a solution for the provision of advanced network scenarios and allocation of computational resources by slicing these multi-domain experimentation infrastructures, in the simplified creation of complex networks with minimum configuration effort based on the intelligent orchestration of this multi-domain slicing, offering Slice-as-a Service (SlaaS) for future Internet developers. 

activities

WP 1 - Project Management

The main objective of this work package is to ensure efficient project management and to monitor the progress of the activities described in its proposal.

Partner institutions: USP

WP 2 - SFI2 Architecture

This work package's main objective is to define an architecture for SFI2 encompassing the different technologies present in the testbeds that support the project and a set of use cases for experimentation and validation of SFI2.

Partner institutions: UFG, UFU, UFPA, UFRGS and UFES

WP 3 - Intelligent Infrastructure for Experimentation

This work package's main objective is to provide intelligent mechanisms for provisioning and maintaining slices in a multi-domain environment with the support of machine learning techniques. Multi-domain network slicing providing slice as a service (SlaaS) is the main target.

Partner institutions: ITA, UNIFACS, UFU, UFMG, UFRJ and PUC-RS

WP 4 - Monitoring and Energy Efficiency

The main objective of this working package is to monitor the SFI2 infrastructure and orchestrate energy efficiency mechanisms applied to the resources of this environment based on multi-domain slicing.

Partner institutions: UFPE, USP, UFMG, UFRGS, UNISINOS and UFF

WP 5 - Security

This WP aims to bring functional aspects essential for good performance of the infrastructure and ensure the integrity and reproducibility of the experiments from the point of view of safety and slice isolation.

Partner institutions: UFBA, UFES, ITA e UFU 

WP 6 - Dissemination, Data Management and Standardization

This WP will be responsible for using different communication strategies to disseminate results, increase SFI2 visibility and adoption, exploit its results, manage the data generated, and timely propose topics of interest to standardization bodies.

Partner institutions: USP, UFRJ and RNP 

deliverables

team UNIFACS

Prof. Dr. Joberto S. B. Martins (UNIFACS) - Principal Investigator (PI) 

Professor at Salvador University (UNIFACS) and PhD in Computer Science at Université Pierre et Marie Curie - UPMC, Paris (1986). International Professor at HTW - Hochschule für Techknik und Wirtschaft des Saarlandes (Germany) since 2004, Senior Research Period at Université of Paris-Saclay in 2016, Salvador University head and researcher at NUPERC and IPQoS research groups on Resource Allocation Models, Machine Learning, Software Defined Networking - OpenFlow, Smart Cities, Smart Grid and Cognitive Management. Previously worked as Invited Professor at Université Paris VI and Institut National des Télécommunications (INT) in France and as key speaker, teacher and invited lecturer in various congresses and institutions in Brazil and Europe.. 

Eduardo Sidney Xavier  (UNIFACS) 

M. Sc. student at Universidade Salvador (UNIFACS), gratuated student in e-learning at Serviço Nacional de Aprendizagem Comercial (SENAC) and specialist in data processing at Universidade Federal do Pará (UFPA). Intersted in database systems, distributes systems, machine learning and robotics. 

references

5GINFIRE. Evolving FIRE into a 5G-Oriented Experimental Playground for Vertical industries (5GINFIRE), 2017. Disponível em: <https://5ginfire.eu/>. Acesso em: 1 nov. 2018

ACM. (2016) Artifact review and badging. [Online]. Disponível em: https://www.acm.org/publications/policies/artifact-review-badging

ACM SIGCOMM 2017 Reproducibility Workshop. http://conferences.sigcomm.org/sigcomm/2017/workshop-reproducibility.html

ANDREWS, J. G. et al. What Will 5G Be? IEEE Journal on Selected Areas in Communications, v. 32, n. 6, p. 1065–1082, jun. 2014.

ARMBRUST, M. et al. Above the Clouds: A Berkeley View of Cloud Computing. [s.l: s.n.].

ARMBRUST, M. et al. A View of Cloud Computing. Commun. ACM, v. 53, n. 4, p. 50–58, abr. 2010.

BLOEM, J. et al. The Fourth Industrial Revolution. Things Tighten, p. 40, 2014.

BOSSHART, P. et al. P4: Programming Protocol-independent Packet Processors. SIGCOMM Comput. Commun. Rev., v. 44, n. 3, p. 87–95, jul. 2014.

BRITO, I. V. S. ; RIBEIRO, A. V. ; SAMPAIO, L. N. . SDN-IPS: Uma Ferramenta para Contenção Automatizada e Colaborativa de Ataques Cibernéticos Baseada em SDN. In: Salão de Ferramentas do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), 2018, Campos do Jordão. Anais do XXXVI do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), 2018.

CERAVOLO, I A. et al., O2CMF: Experiment-as-a-Service for Agile Fed4Fire Deployment of Programmable NFV, 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, 2018, pp. 1-3.

CHEN, S.; ZHAO, J. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Communications Magazine, v. 52, n. 5, p. 36–43, maio 2014.

COSTA, C. H. A.; AMARAL M. C.; JANUÁRIO, G. C.; CARVALHO, T. C. M. B.; MEIROSU, CATALIN.SustNMS: Towards Service Oriented Policy-Based Network Management for Energy-Efficient Networks. Proceedings of the Sustainable Internet and ICT for Sustainability (SustainIT). Pisa, Italy, October 2012.

CSÁSZÁR, A. et al. Unifying Cloud and Carrier Network: EU FP7 Project UNIFY. Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing. Anais...: UCC ’13.Washington, DC, USA: IEEE Computer Society, 2013Disponível em: <https://doi.org/10.1109/UCC.2013.89>. Acesso em: 1 nov. 2018

DARGAHI, T, CAPONI, A, AMBROSIN M., BIANCHI G. AND M. CONTI, A Survey on the Security of Stateful SDN Data Planes, in IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1701-1725, thirdquarter 2017. doi: 10.1109/COMST.2017.2689819

ERICSSON. The programmable network cloud – enriching the cloud with NFV and SDN, dez. 2015. Disponível em: <https://www.ericsson.com/assets/local/news/2016/03/wp-the-programmable-network-cloud.pdf>

FIBRE. Future Internet Brazilian Environment for Experimentation (FIBRE), 2013. Disponível em: <https://fibre.org.br/>. Acesso em: 1 out. 2018

CIUFFO, L.; SALMITO, T.; REZENDE, J.; e MACHADO, I. Testbed FIBRE: Passado, Presente e Perspectivas. In: Anais do VII Workshop de Pesquisa Experimental da Internet do Futuro (WPEIF), Simpósio Brasileiro de Redes de Computadores (SBRC). p.3-6, maio 2016.

FIWARE. FIWARE. Disponível em: <https://www.fiware.org/>. Acesso em: 19 out. 2018.

FOUKAS, X. et al. Network Slicing in 5G: Survey and Challenges. IEEE Communications Magazine, v. 55, n. 5, p. 94–100, maio 2017.

FUTEBOL. Federated Union of Telecommunications Research Facilities for an EU-Brazil Open Laboratory (FUTEBOL), 2016. Disponível em: <http://www.ict-futebol.org.br/>. Acesso em: 19 nov. 2017

HAN, B. et al. Network function virtualization: Challenges and opportunities for innovations. IEEE Communications Magazine, v. 53, n. 2, p. 90–97, fev. 2015.

HUANG, T. et al, A Survey on Large-Scale Software Defined Networking (SDN) Testbeds: Approaches and Challenges, in IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 891-917, Second Qarter 2017. doi: 10.1109/COMST.2016.2630047

JACOBS, A. S. et al. Refining Network Intents for Self-Driving Networks. In: Proceedings of the Afternoon Workshop on Self-Driving Networks. ACM, 2018. p. 15-21.

KALMBACH, P. et al. Empowering Self-Driving Networks. In: Proceedings of the Afternoon Workshop on Self-Driving Networks. ACM, 2018. p. 8-14.

KREUTZ, D. et al. Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE, v. 103, n. 1, p. 14–76, jan. 2015.

LIU, H. H. et al. Automatic Life Cycle Management of Network Configurations. In: Proceedings of the Afternoon Workshop on Self-Driving Networks. ACM, 2018. p. 29-35.

MARTINS, R. F. T. ; GARCIA, L. F. U. ; VILLACA, R. S. ; VERDI, F.L. ; RIBEIRO, M. R. N. ; MARCONDES, C. A. C. . Introdução à Linguagem P4: Teoria e Prática. In: Minicursos do SBRC 2018. (Org.). Introdução à Linguagem P4: Teoria e Prática. 1ed.Campos do Jordão: Editora SBC, 2018, v. 1, p. 1-45.

MCKEOWN, N. et al. OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev., v. 38, n. 2, p. 69–74, mar. 2008.

MEHANI, O., JOURJON, G., RAKOTOARIVELO, T. AND OTT, M. (2014). "An instrumentation framework for the critical task of measurement collection in the future Internet," Computer Networks, v. 63, p. 68-83, Apr. 2014.

MIJUMBI, R. et al. Network Function Virtualization: State-of-the-Art and Research Challenges. IEEE Communications Surveys Tutorials, v. 18, n. 1, p. 236–262, Firstquarter 2016.

NECOS. Novel Enablers for Cloud Slicing (NECOS). Disponível em: <http://www.h2020-necos.eu/>. Acesso em: 1 out. 2018.

OLIVEIRA, W. F. ; SANTOS, L. S. ; MARTINELLO, M. ; SAMPAIO, L. N. . Aprovisionamento de QoS por Rótulos Programáveis para Redes Definidas por Resíduos. In: Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), 2018, Campos do Jordão. Anais do XXXVI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), 2018.

OPEN NETWORKING FOUNDATION. OpenFlow Switch Specification. Version 1.5.1, 26 mar. 2015. Disponível em: <https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf>. Acesso em: 17 set. 2018

RAKOTOARIVELO, T., OTT, M., JOURJON, G., SESKAR, I. (2010). OMF: A Control and Management Framework for Networking Testbeds, ACM SIGOPS Operating Systems Review, v. 43, n. 4, p. 54-59. Jan. 2010.

RIEKSTIN, ANA CAROLINA; RODRIGUES, BRUNO BASTOS ; NGUYEN, KIM KHOA ; DE BRITO CARVALHO, TEREZA CRISTINA MELO; MEIROSU, CATALIN ; STILLER, BURKHARD ; CHERIET, MOHAMED . A Survey on Metrics and Measurement Tools for Sustainable Distributed Cloud Networks. IEEE Communications Surveys and Tutorials, v. 20, p. 1244-1270, 2018.

RIEKSTIN, A. C.; JANUÁRIO, GUILHERME C. ; RODRIGUES, BRUNO B. ; NASCIMENTO, VIVIANE T. ; CARVALHO, T. C. M. B.; MEIROSU, CATALIN . Orchestration of energy efficiency capabilities in networks. Journal of Network and Computer Applications, v. 59, p. 74-87, 2016.

RIEKSTIN, A. C.; JANUARIO, GUILHERME ; RODRIGUES, BRUNO ; NASCIMENTO, VIVIANE ; CARVALHO, T. C. M. B.; MEIROSU, CATALIN . A Survey of Policy Refinement Methods as a Support for Sustainable Networks. IEEE Communications Surveys and Tutorials, v. -, p. 1-1, 2015.

RIEKSTIN, ANA C.; RODRIGUES, BRUNO B. ; JANUÁRIO, GUILHERME C. ; NASCIMENTO, VIVIANE T. ; CARVALHO, TEREZA C. M. B.; MEIROSU, CATALIN . A demonstration of energy efficiency capabilities orchestration in networks. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), 2015, Ottawa. 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM). p. 1149.

RODRIGUES, BRUNO B. ; RIEKSTIN, ANA C.; JANUÁRIO, GUILHERME C. ; NASCIMENTO, VIVIANE T. ; CARVALHO, TEREZA C. M. B.; MEIROSU, CATALIN . GreenSDN: Bringing energy efficiency to an SDN emulation environment. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), 2015, Ottawa. 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM). p. 948.

RODRIGUES, B. B. ; ROJAS, M. A. T. ; NASCIMENTO, VIVIANE ; CARVALHO, TEREZA ; MEIROSU, C. . Green Service Levels in Software Defined Networks. In: 34th Brazilian Symposium on Computer Networks and Distributed Systems (SBRC 2016), 2016, Salvador. 34th Brazilian Symposium on Computer Networks and Distributed Systems (SBRC 2016). Salvador/BA: Sociedade Brasileira de Computação, 2016. v. 1. p. 1-14.

SOARES, J. et al. Toward a telco cloud environment for service functions. IEEE Communications Magazine, v. 53, n. 2, p. 98–106, fev. 2015.

SOFTFIRE. Constructing a Federated Testbed and an Orchestrated Virtualisation Infrastructure. Disponível em: https://www.softfire.eu/wp-content/uploads/SoftFIRE-White-Paper-1-Constructing-a-Federated-and-Orchestrated-Virtualisation-Infrastructure_FINAL.pdf. Acesso em: 05 nov. 2018

VAQUERO, L. M. et al. A Break in the Clouds: Towards a Cloud Definition. SIGCOMM Comput. Commun. Rev., v. 39, n. 1, p. 50–55, dez. 2008.

VERDI, F. L. et al. Novas arquiteturas de data center para cloud computing. Minicursos do XXVIII SBRC, p. 103–152, 2010.

WEBSTER, F. Theories of the Information Society. [s.l.] Routledge, 2014.

YAQOOB, T. et al. On Analyzing Self-Driving Networks: A Systems Thinking Approach. Proceedings of the Afternoon Workshop on Self-Driving Networks, ACM, 2018. p. 1-7.

ZORELLO, L. M. M. ; VIEIRA, M. G. T. ; TEJOS, R. A. G. ; ROJAS, M. A. T. ; MEIROSU, C. ; CARVALHO, T.C.M.B. Improving Energy Efficiency in NFV Clouds with Machine Learning.In: 2018 IEEE International Conference on Cloud Computing, 2018, São Francisco. 2018 IEEE International Conference on Cloud Computing, 2018. v. 12.