EFFECTS OF ALTITUDE TRAINING

FROM CYCLINGPOWERLAB

During the summer months in particular more and more cyclists of all levels find themselves taking on aspirational challenges in the high mountains, consciously or not exposing themselves to the effects of altitude. Most people have an idea that altitude poses certain challenges to human physiology, it’s one of the well-known reasons why climbers die on Everest, but serious cycling fans also know that the thin air of high altitude velodromes such as in Mexico City (2300 metres), Bogota (2600 metres) and La Paz (3417 metres) may conversely allow a cyclist to ride faster, in spite of those physiological challenges.



Effects of Altitude

There are two main effects of riding at altitude, one hindering the cyclist, the other helping him.

As we go higher the air becomes less dense, meaning one breath of air contains less oxygen molecules. It’s a common misconception that the percentage oxygen content of air reduces with altitude; in fact it’s a fairly constant 21% of dry air volume throughout the lowest level of the earth’s atmosphere because lower density air contains less of all gasses. There is no significant effect on human physiology below altitudes of 1500 metres because below that level we have no problems maintaining close to 100% oxygen saturation in our haemoglobin (the oxygen carrying component of blood), higher than 1500 metres though is a different story. Beyond 1500 metres the symptoms of oxygen scarcity familiar to many will be increased rates of respiration and increased heart rates as the body works harder and harder to extract oxygen from the air entering the lungs and to maintain the quantities reaching working muscle. The inevitable effect is a reduction in VO2max or the rate at which oxygen is available for energy release, something which has a very real impact on power output at all levels of performance. Check our HR-VO2-Power Relationship Model  to understand why.


As air becomes less dense it poses less resistance to the forward movement of a cyclist. We have talked about and modelled the significance of low air density “float days” in time trials within our Power Sector (Time Trial) Model . We should keep in mind however that the benefits of lower density air are realised much more by a fast moving cyclist who is using the majority of his power to overcome aerodynamic drag than a cyclist using most of his power to ride slowly up a steep mountain gradient.

The question of whether a cyclist can ride faster at altitude hinges on a trade-off. Is his increase in speed due to reduced air density greater than the speed he loses due to the oxygen limited reduction in power output, something which itself varies with acclimatisation? As a general rule the answer tends to be “yes”, he will ride faster if his power output is high and he is riding on the flat (e.g. in a velodrome environment) whereas if he is slow and/or climbing then “no”, altitude only leads to slowness. At Cycling Power Models though we don’t trust “general rules” so we present this comprehensive model to help you investigate the effects of altitude on any cyclist, of any power output, on any gradient, and through a range of potentially applicable altitudes.


The Inputs


This model allows the study of power and speed effects through a range of altitudes from 0 metres (sea level) through to 4,500 metres (the highest paved road in Europe, the Pico de Veleta near Granda in southern Spain, rises to 3,380 metres while the highest paved road in the USA, Mount Evans in Colorado, rises to 4,465 metres). At each altitude we show "standard atmosphere" air pressure relative to sea level as well as the key physiological impact of such lower air pressures - reduced blood oxygen saturations. A nice resource detailing the physical and physiological implications of high altitude stems from the aviation safety literatuure and can be found here.


Outputs - Physiological Loss


Outputs - Aerodynamic Gain


Outputs - Combined Effect