13.10. Víc vytvořujících funkcí [P: chapter 2, MN: chapter 12] [záznam]
- generalized binomial coefficients, generalized binomial theorem (proof sketched) [MN 12.2 / P 2.2]
- corollary (1-x)^{-n} = \sum_{i=0}^\infty \binom{n+i-1}{n-1} x^i [MN 12.2]
- rooted binary trees, #rooted binary trees is the n-th Catalan number C_n=\frac1{n+1}\binom{2n}{n} [MN 12.4 / P 2.5]
- #partitions of n into odd parts = #partitions of n into distinct parts (just stated) [MN 12.7 / here]
- bonus: the riddle (un, dos, tres, quatre, cinc, sis, ..) and the Veritasium video about the generalized binomial theorem
20.10. Konečné projektivní roviny [P: chapter 3, MN: chapter 9] [záznam]
- definition, non-examples, example (Fano plane) [MN: 9.1]
- every two lines have the same size; order of the projective plane [MN: 9.1 / P 3.1.2]
- every point of an FPP (X,L) of order n lies on n+1 lines, |X|=n^2+n+1, |L|=n^2+n+1 [MN 9.1 / P 3.1.4]
- incidence graph of a set system [MN 9.1 / P 3.2]
- existence of FPP of order 3; existence of FPPs of order n=p^\alpha (just stated); conjectured non-existence for other n [MN 9.2]
- bonus: Matt Parker video about FPPs and Dobble (spoiler alert: contains an answer to the riddle {0,1,3,13,32,36,43,52}).
27.10. Konečné projektivní roviny a ortogonální latinské čtverce [P: chapter 3, MN: chapter 9] [záznam]
- Algebraic construction of FPPs from finite fields (proof sketched) [MN: 9.2]
- latin square, orthogonality [MN: 9.3]
- max # of mutually orthogonal latin squares ("M.O.L.S.") of order n is at most n-1 [MN 9.3]
- an FPP of order n exists iff there exist n-1 M.O.L.S. [MN 9.3]
- bonus: Numberphile video about M.O.L.S. Also: sudoku is a latin square on steroids (CrackingTheCryptic).
3.11. Párování v bipartitních grafech [P: chapter 4.1, 4.4] [záznam]
- definice parovani, velikost m(G) nejvetsiho parovani
- definice tokove site, toku, rezu. Veta o celociselnosti max.toku, pokud jsou vahy celociselne (bez dukazu). Veta maxflow=mincut (bez dukazu).
- definice vrcholoveho pokryti, velikost vc(G) nejmensiho vrcholoveho pokryti
- König-Egerváryho veta: v bipartitnim grafu je m(G)=vc(G)
- definice parovani nasycujiciho partitu A, definice okoli N_G(A').
- Hallova veta: parovani nasycujici A existuje, kdyzz pro kazdou A'\subset A plati |N_G(A')|>=|A'| [P 4.4]
- bonus: The Harris & Ross paper from 1955 on where to cut the railways in the eastern block (map on page 44).
10.11. Aplikace Hallovy věty [P: chapter 4.4, 4.5], zacatek grafove souvislosti [P: chapter 5] [záznam]
- Existence of a perfect matching in a regular bipartite graph [P 4.4.2]
- Extending Latin rectangles to Latin squares [P 4.5.1]
- Alternative formulation of Hall theorem (for hypergraphs, with transversals = systems of distinct representatives) [P 4.4]
- edge cut, edge connectivity k_e(G), k-edge-connected graphs [P 5.1]
- vertex cut, vertex connectivity k_v(G), k-vertex-connected graphs [P 5.1]
- k_e(G), k_v(G) ≤ mindeg(G).
- k_e(G)-1 ≤ k_e(G-e) ≤ k_e(G) [P 5.1.1a]
- bonus: Karetní trik založený na Hallově větě,
17.11. Přednáška se nekoná (stání svátek).
24.11. Grafová souvislost [P: chapter 5] [záznam]
- k_v(G) ≤ k_e(G)
- Věta (Ford-Fulkerson). k_e(G)>=k, kdyžž pro každé 2 vrcholy existuje k hranově disjunktních cest [P: Global version of Menger's theorem, (b)]
- Věta (Menger). k_e(G)>=k, kdyžž pro každé 2 vrcholy existuje k vnitřně-vrcholově-disjunktních cest [důkaz: jen idea]
- most, artikulace
- Ušaté lemma (pro vrcholovou souvislost)
- bonus: proč artikulace. Also another notion to measure how well connected a graph is: expansion.
1.12. Počítání dvěma způsoby [P: chapter 6.2, 6.3, 6.4] [záznam]
- Erdős-Rényi nahodny graf ma skoro jiste velkou komponentu, ak p≥1.1/n, a je skoro jiste souvisly, ak p≥1.1logn/n (bez dukazu)
- Cayley's formula for the number of spanning trees of a complete graph (proof due to Pitman by double-counting, see e.g. Wiki)
- #spanning trees of a K_n minus one edge (bez dukazu)
- Sperner theorem about the size of the largest antichain in P([n])
- odbočka o nerovnostech: Cauchy-Schwarzova a Jensenova
- Graphs without a C_4 subgraph have O(n^{3/2}) edges [P 6.2.1]
- Bonus: A tool to play with the Erdős-Rényi graph. Also: Erdős-Ko-Rado theorem: At most how many subsets of size 5 can you choose from {1,2,..,10} so that every 2 of them intersect?
8.12. Extremální kombinatorika a Ramseyovy věty [P: chapters 6.1, 7.1, 7.2] [záznam]
- ex(H,n) .. největší počet hran grafu na n vrcholech bez podgrafu H
- Mantelova věta: grafy bez K3 [P 6.1]
- Turánova věta (bez důkazu) [wiki]
- Dirichletův princip
- In a company of 6, there are 3 who either all know or all do not know each other [P 7.2.1]
- Ramseyovo číslo R(a,b) pro barvení hran K_n dvěma barvami
- Horní odhad R(a,b) ≤ C(a-1-b-1,a-1) [P 7.2.2]
- Dolní odhad R(k,k) ≥ 2^{k/2} [P 7.2.3]
- Důsledek (\sqrt 2)^k ≤ R(k,k) ≤ 4^k
- Silnější horní odhad R(k,k) ≤ 3.993^k (proof omitted, see a discussion here)
- Bonus: Erdős story about aliens, R(5,5), and R(6,6).
15.12. Ramseyovy věty a Samoopravné kódy [P: chapters 7.3, 8.1-8.3] [záznam]
- Kőnig's lemma (proof sketched) [P 7.5]
- (finite and infinite) Ramsey theorem for p-tuples = hypergraphs (proof omitted) [P 7.3, 7.4]
- Happy ending problem [P 7.3.1]
- Erdős-Szekeres theorem (wiki)
- Error-correcting codes over binary alphabet: Hamming distance, Hamming weight, (n,k,d)-code [P 8.2]
- Priklady: opakovaci kod, paritni kod [P 8.2.1],
- Bonus: A story about Esther Klein a George Szekeres.
5.1. [plán] Víc samoopravných kódů [P: chapter 8.4-8.6]
- code from a Fano plane [P 8.1]
- A code with minimum distance d can correct \floor{(d-1)/2} errors [P 8.2]
- combinatorial ball [P 8.3.1]
- Hamming bound [P 8.3]
- Gilbert-Varshamov bound [P 8.3]
- Hadamard matrix, Sylvester construction of Hadamard matrices, Hadamard code [P 8.2.2]
- linear codes, [n,k,d]-codes [P 8.5], minimum distance of an [n,k,d]-code [P 8.5.2]
- "orthogonal complement" C^\perp of a linear code [P 8.4]. C^\perp of an [n,k,d]-code is a subspace of dimension n-k (proof omitted) [P 8.4.1]
- generator matrix and parity check matrix of an [n,k,d]-code [P 8.5]
- If C is an [n,k,d]-code and P its parity check matrix then x \in C iff P * x^T=0 (proof omitted)
- Hamming codes [P 8.6]
- Hamming code H_r is an [n=2^r-1, k=2^r-r-1, d=3]-code (proof omitted) [P 8.6]
- Example of correcting an error with H_3 [P 8.6]
- Bonus: Hadamard code was used to get the first photos of Mars to Earth.