These are papers published by members of our group on topics related to proof comprehension.

Proof evaluation:

  • Weber, K. & Mejía-Ramos, J. P. (2015). The contextual nature of conviction in mathematics. For the Learning of Mathematics, 35(2), 9-14. [journal]
  • Weber, K., Inglis, M., & Mejía-Ramos, J. P. (2014). How mathematicians obtain conviction: Implications for mathematics instruction and research on epistemic cognition. Educational Psychologist, 49(1), 36-58. [preprint] [journal]
  • Weber, K., & Mejia-Ramos, J. P. (2013). The influence of sources in the reading of mathematical text: A reply to Shanahan, Shanahan, and Misischia. Journal of Literacy Research, 45, 87-96. [preprint] [journal]
  • Weber, K. (2008). How mathematicians determine if an argument is a valid proof. Journal for Research in Mathematics Education 39, 431-459. [preprint] [journal]
  • Inglis, M., & Mejia-Ramos, J. P. (2009). The effect of authority on the persuasiveness of mathematical arguments. Cognition and Instruction 27, 25-50. [preprint] [journal]
  • Weber, K. (2010). Mathematics' majors perceptions of conviction, validity, and proof. Mathematical Thinking and Learning 12, 306-336. [preprint] [journal]
  • Inglis, M., Mejia-Ramos, J.P., Weber, K., & Alcock, L. (2013). On mathematicians' different standards when evaluating elementary proofs. Topics in Cognitive Science, 5(2), 270-282. [preprint]
  • Mejia-Ramos, J. P., & Inglis, M. (2011). Semantic contamination and mathematical proof: Can a non-proof prove? Journal of Mathematical Behavior 30, 19-29. [preprint] [journal]
  • Inglis, M., & Mejia-Ramos, J. P. (2009). On the persuasiveness of visual arguments in mathematics. Foundations of Science 14, 97-110. [preprint] [journal]
  • Inglis, M., & Mejia-Ramos, J. P. (2008). How persuaded are you? A typology of responses. Research in Mathematics Education 10(2), 119-133. [preprint] [journal]
  • Alcock, L., & Weber, K. (2005). Proof validation in real analysis: Inferring and checking warrants. Journal of Mathematical Behavior 24, 125-134. [preprint] [journal]
  • Weber, K., & Alcock, L. (2005). Using warranted implications to understand and validate proofs. For the Learning of Mathematics 25(1), 34–38. [preprint] [journal]

Proof comprehension:

  • Fukawa-Connelly, T., Weber, K., & Mejía-Ramos, J. P. (in press). Informal content and student note-taking in advanced mathematics classes. To appear in Journal for Research in Mathematics Education.
  • Mejía-Ramos, J. P., Lew, K., de la Torre, J., & Weber, K. (2017). Developing and validating proof comprehension tests in undergraduate mathematics. Research in Mathematics Education, 19(2), 130-146. [preprint] [journal]
  • Weber, K. (2015). Effective proof reading strategies to foster comprehension of mathematical proofs. International Journal for Research in Undergraduate Mathematics Education, 1, 289-314. [preprint]
  • Samkoff, A., & Weber, K. (2015). Lessons learned from an instructional intervention on proof comprehension. Journal of Mathematical Behavior, 39, 28-50. [journal] [preprint]
  • Mejia-Ramos, J. P., & Weber, K. (2014). Why and how mathematicians read proofs: Further evidence from a survey study. Educational Studies in Mathematics, 85(2), 161-173. [preprint][journal]
  • Weber, K., & Mejia-Ramos, J. P. (2014). Mathematics majors' beliefs about proof reading. International Journal of Mathematical Education in Science and Technology, 45(1), 89-103. [preprint][journal]
  • Weber, K., & Mejia-Ramos, J. P. (2013). On mathematicians' proof skimming: A reply to Inglis and Alcock. Journal for Research in Mathematics Education, 44(2), 464-471. [preprint] [journal]
  • Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics 79(1), 3-18. [preprint] [journal]
  • Weber, K., & Mejia-Ramos, J. P. (2011). Why and how mathematicians read proofs: An exploratory study. Educational Studies in Mathematics 76, 329-344. [preprint] [journal]

Proof presentation:

  • Weber, K., Fukawa-Connelly, T., Mejía-Ramos, J.P., & Lew, K. (2016). How to help students understand lectures in advanced mathematics. Notices of the American Mathematical Society, 63, 1190-1193. [journal]
  • Lew, K., Fukawa-Connelly, T., Mejía-Ramos, J. P., & Weber, K. (2016). Lectures in advanced mathematics: Why students might not understand what the professor is trying to convey. Journal for Research in Mathematics Education, 47, 162-198. [preprint]
  • Fuller, E., Weber, K., Mejia-Ramos, J. P., Samkoff, A., & Rhoads, K. (2014). Comprehending structured proofs. International Journal for Studies in Mathematics Education 7(1), 1-32. [journal]
  • Lai, Y. & Weber, K. (2014). Factors mathematicians profess to consider when presenting pedagogical proofs. Educational Studies in Mathematics, 85(1), 93-108. [preprint][journal]
  • Lai, Y., Weber, K., & Mejia-Ramos, J. P. (2012). Mathematicians’ perspectives on features of a good pedagogical proof. Cognition and Instruction, 30, 146-169. [preprint]
  • Weber, K. (2004). Traditional instruction in advanced mathematics courses: A case study of one professor's lectures and proofs in an introductory real analysis course. Journal of Mathematical Behavior 23, 115-133. [preprint] [journal]
  • Weber, K. (2012). Mathematicians' perspectives on their pedagogical practice with respect to proof. International Journal of Mathematics Education in Science and Technology, 43, 463-482. [preprint]