# Publications

These are papers published by members of our group on topics related to proof comprehension.

### Proof evaluation:

- Weber, K. & Mejía-Ramos, J. P. (2015). The contextual nature of conviction in mathematics.
*For the Learning of Mathematics, 35*(2), 9-14. [journal] - Weber, K., Inglis, M., & Mejía-Ramos, J. P. (2014). How mathematicians obtain conviction: Implications for mathematics instruction and research on epistemic cognition.
*Educational Psychologist, 49*(1), 36-58. [preprint] [journal] - Weber, K., & Mejia-Ramos, J. P. (2013). The influence of sources in the reading of mathematical text: A reply to Shanahan, Shanahan, and Misischia.
*Journal of Literacy Research, 45*, 87-96. [preprint] [journal] - Weber, K. (2008). How mathematicians determine if an argument is a valid proof.
*Journal for Research in Mathematics Education 39*, 431-459. [preprint] [journal] - Inglis, M., & Mejia-Ramos, J. P. (2009). The effect of authority on the persuasiveness of mathematical arguments.
*Cognition and Instruction 27*, 25-50. [preprint] [journal] - Weber, K. (2010). Mathematics' majors perceptions of conviction, validity, and proof.
*Mathematical Thinking and Learning 12,*306-336. [preprint] [journal] - Inglis, M., Mejia-Ramos, J.P., Weber, K., & Alcock, L. (2013). On mathematicians' different standards when evaluating elementary proofs.
*Topics in Cognitive Science, 5*(2), 270-282. [preprint] - Mejia-Ramos, J. P., & Inglis, M. (2011). Semantic contamination and mathematical proof: Can a non-proof prove?
*Journal of Mathematical Behavior 30*, 19-29. [preprint] [journal] - Inglis, M., & Mejia-Ramos, J. P. (2009). On the persuasiveness of visual arguments in mathematics. Foundations of Science 14, 97-110. [preprint] [journal]
- Inglis, M., & Mejia-Ramos, J. P. (2008). How persuaded are you? A typology of responses.
*Research in Mathematics Education 10*(2), 119-133. [preprint] [journal] - Alcock, L., & Weber, K. (2005). Proof validation in real analysis: Inferring and checking warrants.
*Journal of Mathematical Behavior 24*, 125-134. [preprint] [journal] - Weber, K., & Alcock, L. (2005). Using warranted implications to understand and validate proofs.
*For the Learning of Mathematics 25*(1), 34–38. [preprint] [journal]

### Proof comprehension:

- Fukawa-Connelly, T., Weber, K., & Mejía-Ramos, J. P. (in press). Informal content and student note-taking in advanced mathematics classes. To appear in
*Journal for Research in Mathematics Education*. - Mejía-Ramos, J. P., Lew, K., de la Torre, J., & Weber, K. (2017). Developing and validating proof comprehension tests in undergraduate mathematics.
*Research in Mathematics Education, 19*(2), 130-146. - Weber, K. (2015). Effective proof reading strategies to foster comprehension of mathematical proofs.
*International Journal for Research in Undergraduate Mathematics Education, 1*, 289-314. [preprint] - Samkoff, A., & Weber, K. (2015). Lessons learned from an instructional intervention on proof comprehension.
*Journal of Mathematical Behavior, 39*, 28-50. [journal] [preprint] - Mejia-Ramos, J. P., & Weber, K. (2014). Why and how mathematicians read proofs: Further evidence from a survey study.
*Educational Studies in Mathematics, 85*(2), 161-173. [preprint][journal] - Weber, K., & Mejia-Ramos, J. P. (2014). Mathematics majors' beliefs about proof reading.
*International Journal of Mathematical Education in Science and Technology, 45*(1), 89-103. [preprint][journal] - Weber, K., & Mejia-Ramos, J. P. (2013). On mathematicians' proof skimming: A reply to Inglis and Alcock.
*Journal for Research in Mathematics Education, 44*(2), 464-471. [preprint] [journal] - Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics.
*Educational Studies in Mathematics 79*(1), 3-18. [preprint] [journal] - Weber, K., & Mejia-Ramos, J. P. (2011). Why and how mathematicians read proofs: An exploratory study.
*Educational Studies in Mathematics 76*, 329-344. [preprint] [journal]

### Proof presentation:

- Weber, K., Fukawa-Connelly, T., Mejía-Ramos, J.P., & Lew, K. (2016). How to help students understand lectures in advanced mathematics.
*Notices of the American Mathematical Society*, 63, 1190-1193. [journal] - Lew, K., Fukawa-Connelly, T., Mejía-Ramos, J. P., & Weber, K. (2016). Lectures in advanced mathematics: Why students might not understand what the professor is trying to convey.
*Journal for Research in Mathematics Education, 47,*162-198. - Fuller, E., Weber, K., Mejia-Ramos, J. P., Samkoff, A., & Rhoads, K. (2014). Comprehending structured proofs.
*International Journal for Studies in Mathematics Education 7*(1), 1-32. [journal] - Lai, Y. & Weber, K. (2014). Factors mathematicians profess to consider when presenting pedagogical proofs.
*Educational Studies in Mathematics, 85*(1), 93-108. [preprint][journal] - Lai, Y., Weber, K., & Mejia-Ramos, J. P. (2012). Mathematicians’ perspectives on features of a good pedagogical proof.
*Cognition and Instruction, 30,*146-169. [preprint] - Weber, K. (2004). Traditional instruction in advanced mathematics courses: A case study of one professor's lectures and proofs in an introductory real analysis course.
*Journal of Mathematical Behavior 23*, 115-133. [preprint] [journal] - Weber, K. (2012). Mathematicians' perspectives on their pedagogical practice with respect to proof.
*International Journal of Mathematics Education in Science and Technology, 43,*463-482. [preprint]