Peer-reviewed conference publications

Computational algorithm that enables synergetic phase compensation and automatic focusing for off-axis Digital Holographic Microscopy operating in telecentric regime

Cite as: R. Castaneda, C. Trujillo, and A. Doblas, “Computational algorithm that enables synergetic phase compensation and automatic focusing for off-axis Digital Holographic Microscopy operating in telecentric regime,” Optica Imaging and Applied Optics Congress, paper DTu3A.5 (2023). 

Evaluation of the robustness and accuracy of PCA-based algorithms for in-line Digital Holographic Microscopy

Cite as: K. Balachandran, R. Castaneda, A. Doblas, “Evaluation of the robustness and accuracy of PCA-based algorithms for in-line Digital Holographic Microscopy,” Optica Imaging and Applied Optics Congress, paper JTu4A.35 (2023). 

An Open-Source Tool for Non-Telecentric Digital Holographic Microscopy Reconstruction

Cite as: B. Bogue-Jimenez, C. Trujillo, and A. Doblas, “An Open-Source Tool for Non-Telecentric Digital Holographic Microscopy Reconstruction,” Optica Imaging and Applied Optics Congress, paper IM3E.1 (2023). 

Accurate and fast phase compensation of dynamic samples in Digital Holographic Microscopy

Cite as: S. Obando-Vasquez, A. Doblas, and C. Trujillo, “Accurate and fast phase compensation of dynamic samples in Digital Holographic Microscopy,” Optica Imaging and Applied Optics Congress, paper HW3C.3 (2023). 

Super-resolution in confocal microscopy using generative adversarial networks with paired and unpaired data

Cite as: S. Patra, C. Trujillo, and A. Doblas, “Super-resolution in confocal microscopy using generative adversarial networks with paired and unpaired data,” Proc. SPIE 12385, 123850S (2023). doi.:10.1117/12.2652629. External link here

Overview of the automatic reconstruction method for quantitative phase imaging using a digital holographic microscope operating in non-telecentric regime

Cite as: B. Bogue-Jimenez, C. Trujillo, and A. Doblas, “Overview of the automatic reconstruction method for quantitative phase imaging using a digital holographic microscope operating in non-telecentric regime,” Proc. SPIE 12389, 123890B (2023). doi.: 10.1117/12.2651944

External link here

Concurrent execution of phase compensation and automatic focusing procedures for telecentric off-axis Digital Holographic Microscopy

Cite as: R. Castaneda, C. Trujillo, and A. Doblas, “Concurrent execution of phase compensation and automatic focusing procedures for telecentric off-axis Digital Holographic Microscopy,” Proc. SPIE 12389, 123890A (2023). Doi.: 10.1117/12.2652631. 

External link here

Common-path digital holographic microscope using a Fresnel biprism for imaging spatially dense samples

Cite as: C. Hayes-Rounds, R. Isaac, and A. Doblas, “Common-path digital holographic microscope using a Fresnel biprism for imaging spatially dense samples,” OSA Imaging and Applied Optics Congress, paper 3F3A.3 (2022). External link here

An Open-Source Python library for Digital Holographic Microscopy Imaging

Cite as: R. Castaneda, C. Trujillo, and A. Doblas, "An Open-Source Python library for Digital Holographic Microscopy Imaging“, OSA Imaging and Applied Optics Congress, paper JTh2A.1  (2022).  External link here.

Learning-based Quantitative Phase Imaging in Digital Holographic Microscopy: a comparison study between different models

Cite as: R. Castaneda, A. Doblas, and C. Trujillo “Learning-based Quantitative Phase Imaging in Digital Holographic Microscopy: a comparison study between different models,” OSA Imaging and Applied Optics Congress, paper 3F3A.4 (2022). External link here.

Turning a commercial bright-field microscope into a precise polarization-sensitive imaging device

Cite as: S. Obando-Vasquez, C. Trujillo, and A. Doblas, “Turning a commercial bright-field microscope into a precise polarization-sensitive imaging device,” Proc. SPIE 12112, 121120E (2022). https://doi.org/10.1117/12.2619052.

Marker-less motion capture system using OpenPose

Cite as: B. Feng, D. W. Powell, and A. Doblas, “Marker-less motion capture system using OpenPose,” Proc. SPIE 12101, 121010B (2022). https://doi.org/10.1117/12.2619059

Learning-based method for full phase reconstruction of biological samples in digital holographic microscopy

Cite as: R. Castaneda, C. Trujillo, and A. Doblas, “Learning-based method for full phase reconstruction of biological samples in digital holographic microscopy,” 2021 IEEE Photonics Conference (IPC) (2021). 

Assessment of a Fresnel biprism-based digital holographic microscope for fast, high-sensitivity, high-resolution and polarization-sensitive phase imaging

Cite as: C. Hayes-Rounds, B. Bogue-Jimenez, J. Garcia-Sucerquia, O. Skalli, and A. Doblas, “Assessment of a Fresnel biprism-based digital holographic microscope for fast, high-sensitivity, high-resolution and polarization-sensitive phase imaging,” OSA Imaging and Applied Optics Congress, paper 3W5A.2 (2021). 

Synergetic combination of median filtered images to reduce speckle noise in digital holography (DH) and digital holographic microscopy (DHM)

Cite as: R. Castaneda, J. Garcia-Sucerquia, and A. Doblas, “Synergetic combination of median filtered images to reduce speckle noise in digital holography (DH) and digital holographic microscopy (DHM),” OSA Imaging and Applied Optics Congress, paper DF4C.7 (2021). 

Overview of compact and field-portable system for resolution enhanced digital holographic microscopy by structured illumination

Cite as: T. O’Connor, A. Doblas, and B. Javidi, “Overview of compact and field-portable system for resolution enhanced digital holographic microscopy by structured illuminarion,” OSA Imaging and Applied Optics Congress, paper JTh2A.17, https://doi.org/10.1364/3D.2020.JTh2A.17  (2020).

Fast-iterative blind reconstruction algorithms for accurate quantitative phase images in phase-shifting digital holographic microscopy

Cite as: R. Castaneda, C. Buitrago-Duque, J. Garcia-Sucerquia, A. Robinson, and A. Doblas, “Fast-iterative blind reconstruction algorithms for accurate quantitative phase images in phase-shifting digital holographic microscopy,” OSA Imaging and Applied Optics Congress, paper HTh5D.3, https://doi.org/10.1364/DH.2020.HTh5D.3 (2020).

Reduction in data acquisition for resolution improvement in Structured Illumination Digital Holographic Microscopy

Cite as: R. Castaneda, T. O’Connor, A. Doblas, and B. Javidi, “Reduction in data acquisition for resolution improvement in Structured Illumination Digital Holographic Microscopy,” Proc. SPIE 11402, 114020R-8 (2020).

Digital holographic microscopy as a screening technology for diabetes

Cite as: A. Doblas, J. Garcia-Sucerquia, Genaro Saavedra, and Manuel Martinez-Corral, “Digital holographic microscopy as a screening technology for diabetes,” Proc. SPIE 10997, 10997K-7 (2019).

Wollaston-based tunable frequency structured illumination microscopy

Cite as: S. Bedoya, A. Doblas, G. Saavedra and C. Preza, “Wollaston-based tunable frequency structured illumination microscopy,” OSA Imaging and Applied Optics congress, paper ITu2B.3, https://doi.org/10.1364/ISA.2018.ITu2B.3 (2018).

Optimal design of incoherent tunable-frequency structured illumination microscope scheme

Cite as: J. Sola-Pikabea, A. Doblas, G. Saavedra, M. Martinez-Corral and C. Preza, “Optimal design of incoherent tunable-frequency structured illumination microscope scheme,” IEEE 15th International Symposium on Biomedical Imaging, Washington, DC, USA, pp. 449-452(2018).

Tradeoff between insensitivity to depth-induced spherical aberration and resolution of 3D fluorescence imaging due to the use of wavefront encoding with a radially symmetric phase mask

Cite as: A. Dutta, A. Doblas, G. Saavedra, and C. Preza, “Tradeoff between insensitivity to depth-induced spherical aberration and resolution of 3D fluorescence imaging due to the use of wavefront encoding with a radially symmetric phase mask,” Proc. SPIE 10499, 1049913- (2018).

Preprocessing method to correct illumination pattern in sinusoidal-based structured illumination microscopy

Cite as: H. Shabani, A. Doblas, G. Saavedra and C. Preza, “Preprocessing method to correct illumination pattern in sinusoidal-based structured illumination microscopy,” Proc. SPIE 10499, 1049960- (2018).

3D structured illumination microscopy using an incoherent illumination system based on a Fresnel biprism

Cite as: H. Shabani, A. Doblas, G. Saavedra and C. Preza, “3D structured illumination microscopy using an incoherent illumination system based on a Fresnel biprism,” Proc. SPIE 10499, 1049902- (2018).

Evaluation of the use of wavefront encoding to reduce depth-induced aberration in structured illumination microscopy

Cite as: N. Patwary, A. Doblas, G. Saavedra, and C. Preza, “Evaluation of the use of wavefront encoding to reduce depth-induced aberration in structured illumination microscopy” Proc. SPIE 10499, 1049936- (2018).

Computational approach to address reduced modulation contrast in structured-illumination microscopy

Cite as: N. Patwary, C. Preza and A. Doblas, “Computational approach to address reduced modulation contrast in structured-illumination microscopy,” OSA Imaging and Applied Optics congress, paper JTu5A.9 (2017), https://doi.org/10.1364/3D.2017.JTu5A.9 .

Incoherent-based tunable frequency structured illumination microscopy

Cite as: A. Doblas and C. Preza, “Incoherent-based tunable frequency structured illumination microscopy,” OSA Imaging and Applied Optics congress, paper ITh4E.4 (2017), https://doi.org/10.1364/ISA.2017.ITh4E.4 .

Simultaneous optical sectioning and super resolution in 2D-SIM using tunable structured illumination

Cite as: H. Shabani, A. Doblas and C. Preza, “Simultaneous optical sectioning and super resolution in 2D-SIM using tunable structured illumination,” OSA Imaging and Applied Optics congress, paper CW4B.4 (2017), https://doi.org/10.1364/COSI.2017.CW4B.4 .

Comparison of 3D structured patterns with tunable frequency for use in structured illumination microscopy

Cite as: A. Doblas, H. Shabani, G. Saavedra and C. Preza, “Comparison of 3D structured patterns with tunable frequency for use in structured illumination microscopy,” Proc. SPIE 10070, 100700H-8 (2017).

Comparison of two structured illumination techniques based on different 3D illumination pattern

Cite as: H. Shabani, N. Patwary, A. Doblas, G. Saavedra and C. Preza, “Comparison of two structured illumination techniques based on different 3D illumination pattern,” Proc. SPIE 10070, 1007013-8 (2017).

Implementation of an incoherent 3-D patterned illumination design in a Structured Illumination Microscopy

Cite as: S. V. King, C. Taylor, A. Doblas, H. Shabani, N. Patwary, G. Saavedra and C. Preza, “Implementation of an incoherent 3-D patterned illumination design in a Structured Illumination Microscopy,” Proc. SPIE 1007013, 1007004-7 (2017).

Three-dimensional microscopy through liquid-lens axial scanning

Cite as: A. Doblas, E. Sánchez-Ortiga, G. Saavedra, M. Martínez-Corral, P.-Y. Hsieh and Y.-P. Huang, “Three-dimensional microscopy through liquid-lens axial scanning,” Proc. SPIE 9495, 1-6 (2015).

Accurate quantitative image through telecentric digital holographic microscopy,

Cite as: A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra and J. Garcia-Surcerquia, “Accurate quantitative image through telecentric digital holographic microscopy,” Proc. SPIE 9117, 911705-8 (2014).

Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering

Cite as: A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Martinez-Corral and C. Preza, “Investigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-spread function engineering,” Proc. SPIE 8949-40 (2014).

Reducing depth induced spherical aberration by wavefront coding in 3D widefield fluorescence microscopy

Cite as: N. Patwary, A. Doblas, S. V. King and C. Preza, “Reducing depth induced spherical aberration by wavefront coding in 3D widefield fluorescence microscopy,” Proc. SPIE 8949-37 (2014).

Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCOS (reflective) SLM

Cite as: S. V. King, A. Doblas, N. Patwary, G. Saavedra, M. Martínez-Corral and C. Preza, “Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCOS (reflective) SLM,” Proc. SPIE 8949-39 (2014).

Novel proposal in widefield 3D microscopy

Cite as: E. Sánchez-Ortiga, A. Doblas, G. Saavedra and M. Martínez-Corral, “Novel proposal in widefield 3D microscopy”, Proc. SPIE 7690, 7690.05 (2010).