大輪講

物理学科では毎年、学部4年生は論文紹介のプレゼンテーションを行います。ここに、これまでの記録をまとめています。発表20分+質疑応答5分。松本研の学生は、発表練習の前に注意事項を読むこと。

2024年度

大橋画”Towards Quantum Superpositions of a Mirror”, Phys. Rev. Lett. 91, 130401 (2003)

長谷川智大”Cooling of a Mirror by Radiation Pressure”, Phys. Rev. Lett. 83, 3174 (1999)

村井歩夢"Self-cooling of a micromirror by radiation pressure", Nature 444, 67–70 (2006) 

渡邊幹太”Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data”, Nature Geoscience volume 11, pages367–373 (2018)


2023年度

井上智裕”Observation and characterization of an optical spring”, Phys. Rev. A 69, 051801(R) (2004)

奥村笙太”Measurement of quantum back action in the audio band at room temperature”, Nature 568, 364–367 (2019)

佐久間陽右”Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities”, Phys. Rev. Lett. 93, 250602 (2004)

水野貴耀"Passive laser power stabilization via an optical spring", Optics Letters 47, 2746-2749 (2022)

小川凛”Laser power stabilization via radiation pressure”, Optics Letters 46, 1946-1949 (2021)

岩立大勇

中村遼

原大波 


2022年度

磯貝明里 "Measurement of the Earth tides with a MEMS gravimeter", Nature 531, 614–617 (2016)

松本凱 "Passive laser power stabilization via an optical spring", Optics Letters 47, 2746-2749 (2022)

齊藤力也 "The isolation of tesst masses for gravitational wave antennae", Physics Letters A 175, 82-84 (1993)


2021年度 

狩野寛知 "Measurement of gravitational coupling between millimetre-sized masses", Nature 591, 225–228 (2021)

杉原康介 "The shape of fiber tapers", Journal of Lightwave Technology 10, 432-438 (1992)

臼倉航 "Shot-noise-limited laser power stabilization with a high-power photodiode array", Optics Letters 34, 2912-2914 (2009)

田邉史弥 "Wide-Band Direct Measurement of Thermal Fluctuations in an Interferometer", Phys. Rev. Lett. 91, 260602 (2003)


次回以降に紹介する論文の候補:

量子計測&制御

Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector, Phys. Rev. Lett. 125, 131101 (2020)

DAMPING OF BROWNIAN MOTION BY COLD LOAD, PHYSICS LETTERS 63A, 3 (1977)

Measurement-based control of a mechanical oscillator at its thermal decoherence rate, Nature 524, 325–329 (2015)

Measurement-based quantum control of mechanical motion, Nature 563, 53–58 (2018)

Entanglement of Macroscopic Test Masses and the Standard Quantum Limit in Laser Interferometry, Phys. Rev. Lett. 100, 013601 (2008)

Mechanical Squeezing via Fast Continuous Measurement, Phys. Rev. Lett. 125, 043604 (2020)

Measurement-based preparation of multimode mechanical states, Sci. Adv. 8, eabm7585 (2022)

Optical Dilution and Feedback Cooling of a Gram-Scale Oscillator to 6.9 mK, Phys. Rev. Lett. 99, 160801 (2007)

An All-Optical Trap for a Gram-Scale Mirror, Phys. Rev. Lett. 98, 150802 (2007)

Demonstration of an optical spring in the 100 g mirror regime, Class. Quantum Grav. 33 075007 (2016)

Optical Bistability and Mirror Confinement Induced by Radiation Pressure, Phys. Rev. Lett. 51, 1550 (1983)

Dynamical Multistability Induced by Radiation Pressure in High-Finesse Micromechanical Optical Cavities, Phys. Rev. Lett. 96, 103901 – Published 16 March (2006)

Trapping and Cooling a Mirror to Its Quantum Mechanical Ground State, PRL 99, 073601 (2007)

Optically tunable mechanics of microlevers. Appl. Phys. Lett. 83, 1337–1339 (2003)

Observation of Optomechanical Multistability in a High-Q Torsion Balance Oscillator, Phys. Rev. A 77, 031802(R)

Control Photonic Structures Using Optical Forces, Nature volume 462, pages633–636 (2009)

Designing Evanescent Optical Interactions to Control the Expression of Casimir Forces in Optomechanical Structures, Appl. Phys. Lett. 98, 194105 (2011)

Controllable Optical Bistability Based on Photons and Phonons in a Two-Mode Optomechanical System , Phys. Rev. A 88, 055801 – Published 12 November (2013)

All Optical Reconfiguration of Optomechanical Filters , Nature Communications volume 3, Article number: 846 (2012)


熱雑音&安定化光源&低散逸振動子

Thermal noise in mechanical experiments, Phys. Rev. D 42, 2437 (1990)

Direct measurement of coating thermal noise in optical resonators, Phys. Rev. D 98, 122001 (2018)

Tenfold reduction of Brownian noise in high-reflectivity optical coatings, NATURE PHOTONICS 7, 644 (2013)

Unification of thermal and quantum noise in gravitational-wave detectors, arXiv:2301.00338

Laser Power Stabilization beyond the Shot Noise Limit Using Squeezed Light, Phys. Rev. Lett. 121, 173601 (2018)

Precise measurement of laser power using an optomechanical system, Optics Express 22, 2013-2030 (2014)

Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As Bragg mirrors, Metrologia 53, 860 (2016)

Thermorefringent noise in crystalline optical materials, Phys. Rev. D 107, 022001 (2023)

Full scale prototype of high Q pendulum for interferometric gravitational wave detectors, Review of Scientific Instruments 71, 2206 (2000)

Very High Q Measurements on a Fused Silica Monolithic Pendulum for Use in Enhanced Gravity Wave Detectors, Phys. Rev. Lett. 85, 2442 (2000)

Superconducting levitation of a mg-scale cavity mirror, Appl. Phys. Lett. 116, 244103 (2020)

High-Q magnetic levitation and control of superconducting microspheres at millikelvin temperatures, arXiv:2211.06289

Fundamental limits of laser power stabilization via a radiation pressure transfer scheme, Optics Letters 45, 3969 (2020)

A cryogenic torsion balance using a liquid-cryogen free, ultra-low vibration cryostat editors-pick, Review of Scientific Instruments 93, 064505 (2022)


量子光学

Observation of Squeezed Light with 10-dB Quantum-Noise Reduction, Phys. Rev. Lett. 100, 033602 (2008)

Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency, Phys. Rev. Lett. 117, 110801 (2016)

Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors, Phys. Rev. Lett. 124, 171101 (2020)

10 dB Quantum-Enhanced Michelson Interferometer with Balanced Homodyne Detection, Phys. Rev. Lett. 129, 031101, (2022)

Squeezed States of Light for Future Gravitational Wave Detectors at a Wavelength of 1550 nm, Phys. Rev. Lett. 129, 121103 (2022)


重力関係

The superconducting gravimeter, Review of Scientific Instruments 70, 4131 (1999)

Precision gravimetry with atomic sensors, Meas. Sci. Technol. 20, 022001 (2009)

Suitability of Low‐Cost Three‐Axis MEMS Accelerometers in Strong‐Motion Seismology: Tests on the LIS331DLH (iPhone) Accelerometer, Bulletin of the Seismological Society of America 103, 2906–2913 (2013)

In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor, Sensors and Actuators A 145–146, 283-290 (2008)

A classical channel model for gravitational decoherence, New J. Phys. 16 065020 (2014)

Invited Review Article: Measurements of the Newtonian constant of gravitation, G , Rev Sci Instrum. 88, 11 (2017) 

Does the Time-of-Swing Method Give a Correct Value of the Newtonian Gravitational Constant?, Phys. Rev. Lett. 75, 2796 (1995)


ダークマター探索

Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures, Phys. Rev. A 101, 053835 (2020)

Search for Composite Dark Matter with Optically Levitated Sensors, Phys. Rev. Lett. 125, 181102 (2020)

Proposal for gravitational direct detection of dark matter, Phys. Rev. D 102, 072003 (2020)

Ultralight dark matter detection with mechanical quantum sensors, New Journal of Physics, 23 023041 (2021)


防振

Negative-stiffness-mechanism vibration isolation systems, Proc. of SPIE Vol. 1619, Vibration Control in Microelectronics, Optics, and Metrology, ed. C G Gordon (Feb 1992) Copyright SPIE

Vibration Isolation System Using Negative Stiffness, JSME 46, 3 (2003)

Vacuum-compatible vibration isolation stack for an interferometric gravitational wave detector TAMA300, Review of Scientific Instruments 73, 2428 (2002)

Classical and Quantum Gravity Improvement of the vibration isolation system for TAMA300, Class. Quantum Grav. 19 1599 (2002)

Active vibration isolation using a Suspension Point Interferometer, J. Phys.: Conf. Ser. 32 451 (2006)