Peer-reviewed publications


39. Hollie Packman, Susan H. Little, José Miguel Nieto, M. Dolores Basallote, Rafael Pérez-López, Barry Coles, Katharina Kreissig, Tina van de Flierdt, Mark Rehkämper. Tracing acid mine drainage and estuarine Zn attenuation using Cd and Zn isotopes. Under Review Geochim. Cosmochim. Acta. https://doi.org/10.1016/j.gca.2023.09.001 

38. Basallote, M.D., Zarco, V., Macías, F., Cánovas, C.R., Hidalgo, P.J. Metal bioaccumulation in spontaneously grown aquatic macrophytes in Fe-rich substrates of a passive treatment plant for acid mine drainage. J. Environ. Manage. 2023 https://doi.org/10.1016/j.jenvman.2023.118495  

38. Basallote, M.D., Zarco, V., Macías, F., Cánovas, C.R., Hidalgo, P.J. Metal bioaccumulation in spontaneously grown aquatic macrophytes in Fe-rich substrates of a passive treatment plant for acid mine drainage. J. Environ. Manage. 2023 https://doi.org/10.1016/j.jenvman.2023.118495  

37. Kerl C, Basallote MD, Käberich M, Oldani E, Cerón NP, Colina AE, Cánovas CR, Nieto JM, Planer-Friedrich B. Consequences of sea level rise for high metal(loid) loads in the Ría Huelva estuary sediments. Sci Total Environ 2023 https://doi.org/10.1016/j.scitotenv.2023.162354   

36. Cánovas CR, González RM, Vieira BJC, Waerenborgh JC, Marques R, Macías F, Basallote MD, Olias M, Prudencio MI: Metal mobility and bioaccessibility from cyanide leaching heaps in a historical mine site. Journal of Hazardous Materials 2023, 448:130948.  https://doi.org/10.1016/j.jhazmat.2023.130948 

Cánovas CR, Basallote MD, Macías F, Olías M, Pérez-López R, Nieto JM 2022 Thallium in environmental compartments affected by acid mine drainage (AMD) from the Iberian Pyrite Belt (IPB): From rocks to the ocean. Earth-Science Reviews 235: 104264. https://doi.org/10.1016/j.earscirev.2022.104264  

35. Cánovas CR, Basallote  MD, Macías F. 2020. Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ría of Huelva (SW Spain). Environ Pollut. 267, 115506 https://doi.org/10.1016/j.envpol.2020.115506  

34. Cánovas CR, Basallote MD, Borrego P, Millán-Becerro R, Pérez-López R: Metal partitioning and speciation in a mining-impacted estuary by traditional and passive sampling methods. Science of The Total Environment 2020, 722:137905.  https://doi.org/10.1016/j.scitotenv.2020.137905 

33. Pérez-López R, Millán-Becerro R, Basallote MD, Carrero S, Parviainen A, Freydier R, Macías F, Cánovas CR: Effects of estuarine water mixing on the mobility of trace elements in acid mine drainage leachates. Marine Pollution Bulletin 2023, 187:114491. https://doi.org/10.1016/j.marpolbul.2022.114491  

32. Isgró MA, Basallote MD, Caballero I, Barbero L. Comparison of UAS and Sentinel-2 Multispectral Imagery for Water Quality Monitoring: A Case Study for Acid Mine Drainage Affected Areas (SW Spain). Remote Sensing. 2022; 14(16):4053. https://doi.org/10.3390/rs14164053  

31. Isgró MA, Basallote MD, Barbero L: Unmanned Aerial System-Based Multispectral Water Quality Monitoring in the Iberian Pyrite Belt (SW Spain). Mine Water and the Environment 2022, 41:30-41. https://doi.org/10.1007/s10230-021-00837-4 

30. Neira P, Romero-Freire A, Basallote MD, Qiu H, Cobelo-García A, Cánovas CR: Review of the concentration, bioaccumulation, and effects of lanthanides in marine systems. Frontiers in Marine Science 2022, 9. https://www.frontiersin.org/articles/10.3389/fmars.2022.920405 

29. Haneklaus N, Barbossa S, Basallote MD, Bertau M, Bilal E, Chajduk E, Chernysh Y, Chubur V, Cruz J, Dziarczykowski K, et al: Closing the upcoming EU gypsum gap with phosphogypsum. Resources, Conservation and Recycling 2022, 182:106328.  https://doi.org/10.1016/j.resconrec.2022.106328 

28. Fuentes-López JM, Olías M, León R, Basallote MD, Macías F, Moreno-González R, Cánovas CR: Stream-pit lake interactions in an abandoned mining area affected by acid drainage (Iberian Pyrite Belt). Science of The Total Environment 2022, 833:155224. https://doi.org/10.1016/j.scitotenv.2022.155224 

27. Ayora C, Carrero S, Bellés J, Basallote M-D, Cánovas CR, Macías F: Partition of Rare Earth Elements Between Sulfate Salts Formed by the Evaporation of Acid Mine Drainage. Mine Water and the Environment 2022, 41:42-57. https://doi.org/10.1007/s10230-021-00803-0 

26. Cánovas CR, Macías F, Basallote MD, Olías M, Nieto JM, Pérez-López R: Metal(loid) release from sulfide-rich wastes to the environment: The case of the Iberian Pyrite Belt (SW Spain). Current Opinion in Environmental Science & Health 2021, 20:100240. https://doi.org/10.1016/j.coesh.2021.100240 

25. Cánovas CR, Basallote MD, Macías F, Olías M, Pérez-López R, Ayora C, Nieto JM: Geochemical behaviour and transport of technology critical metals (TCMs) by the Tinto River (SW Spain) to the Atlantic Ocean. Science of The Total Environment 2021, 764:143796. https://doi.org/10.1016/j.scitotenv.2020.143796Get rights and content

24. Olías M, Cánovas CR, Macías F, Basallote MD, Nieto JM: The evolution of pollutant concentrations in a river severely affected by acid mine drainage: Río Tinto (SW Spain). Minerals 2020, 10:598. https://doi.org/10.3390/min10070598 

23. Basallote MD, Borrero-Santiago AR, Cánovas CR, Hammer KM, Olsen AJ, Ardelan MV: Trace metal mobility in sub-seabed sediments by CO2 seepage under high-pressure conditions. Science of The Total Environment 2020, 700:134761. https://doi.org/10.1016/j.scitotenv.2019.134761 

22. Cánovas CR, Macías F, Olías M, Basallote MD, Pérez-López R, Ayora C, Nieto JM: Release of technology critical metals during sulfide oxidation processes: the case of the Poderosa sulfide mine (south-west Spain). Environmental Chemistry 2020, 17:93-104.  https://doi.org/10.1071/EN19118 

21. Basallote MD, Cánovas CR, Olías M, Pérez-López R, Macías F, Carrero S, Ayora C, Nieto JM: Mineralogically-induced metal partitioning during the evaporative precipitation of efflorescent sulfate salts from acid mine drainage. Chemical Geology 2019, 530:119339. https://doi.org/10.1016/j.chemgeo.2019.119339 

20. Conradi M, Sánchez-Moyano JE, Bhuiyan MKA, Rodríguez-Romero A, Galotti A, Basallote MD, DelValls A, Parra G, Riba I: Intraspecific variation in the response of the estuarine European isopod Cyathura carinata (Krøyer, 1847) to ocean acidification. Science of The Total Environment 2019, 683:134-145. https://doi.org/10.1016/j.scitotenv.2019.05.227 

19. Olías M, Cánovas CR, Basallote MD, Macías F, Pérez-López R, González RM, Millán-Becerro R, Nieto JM: Causes and impacts of a mine water spill from an acidic pit lake (Iberian Pyrite Belt). Environmental Pollution 2019, 250:127-136. https://doi.org/10.1016/j.envpol.2019.04.011 

18. Millán-Becerro R, Pérez-López R, Macías F, Cánovas CR, Papaslioti E-M, Basallote MD: Assessment of metals mobility during the alkaline treatment of highly acid phosphogypsum leachates. Science of The Total Environment 2019, 660:395-405. https://doi.org/10.1016/j.scitotenv.2018.12.305 

17. Martínez NM, Basallote MD, Meyer A, Cánovas CR, Macías F, Schneider P: Life cycle assessment of a passive remediation system for acid mine drainage: Towards more sustainable mining activity. Journal of Cleaner Production 2019, 211:1100-1111. https://doi.org/10.1016/j.jclepro.2018.11.224 

16. Cánovas CR, De La Aleja CG, Macías F, Pérez-López R, Basallote MD, Olías M, Nieto JM: Mineral reactivity in sulphide mine wastes: influence of mineralogy and grain size on metal release. European Journal of Mineralogy 2019, 31:263-273. DOI: 10.1127/ejm/2019/0031-2843 

15. Olías M, Cánovas CR, Basallote MD, Lozano A: Geochemical behaviour of rare earth elements (REE) along a river reach receiving inputs of acid mine drainage. Chemical Geology 2018, 493:468-477.  https://doi.org/10.1016/j.chemgeo.2018.06.029 

14. de Orte MR, Bonnail E, Sarmiento AM, Bautista-Chamizo E, Basallote MD, Riba I, DelValls Á, Nieto JM: Metal fractionation in marine sediments acidified by enrichment of CO2: A risk assessment. Marine Pollution Bulletin 2018, 131:611-619. https://doi.org/10.1016/j.marpolbul.2018.04.072 

13. Cánovas CR, Macías F, Pérez-López R, Basallote MD, Millán-Becerro R: Valorization of wastes from the fertilizer industry: Current status and future trends. Journal of Cleaner Production 2018, 174:678-690. https://doi.org/10.1016/j.jclepro.2017.10.293  

12. Basallote MD, Rodríguez-Romero A, De Orte MR, DelValls TÁ, Riba I: CO2 leakage simulation: effects of the pH decrease on fertilisation and larval development of Paracentrotus lividus and sediment metals toxicity. Chemistry and Ecology 2018, 34:1-21. https://doi.org/10.1080/02757540.2017.1396319  

11. Goulding TA, De Orte MR, Szalaj D, Basallote MD, DelValls TA, Cesar A: Assessment of the environmental impacts of ocean acidification (OA) and carbon capture and storage (CCS) leaks using the amphipod Hyale youngi. Ecotoxicology 2017, 26:521-533. https://doi.org/10.1007/s10646-017-1783-6   

10. Basallote MD, Rodríguez-Romero A, De Orte MR, Del Valls TÁ, Riba I: Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves. Aquatic Toxicology 2015, 166:63-71. https://doi.org/10.1016/j.aquatox.2015.07.004 

9. Rodríguez-Romero A, Jiménez-Tenorio N, Basallote MD, Orte MRD, Blasco J, Riba I: Predicting the Impacts of CO2 Leakage from Subseabed Storage: Effects of Metal Accumulation and Toxicity on the Model Benthic Organism Ruditapes philippinarum. Environmental Science & Technology 2014, 48:12292-12301. https://doi.org/10.1021/es501939c 

8. Basallote MD, De Orte MR, DelValls TÁ, Riba I: Studying the Effect of CO2-Induced Acidification on Sediment Toxicity Using Acute Amphipod Toxicity Test. Environmental Science & Technology 2014, 48:8864-8872. https://doi.org/10.1021/es5015373 

7. de Orte MR, Sarmiento AM, Basallote MD, Rodríguez-Romero A, Riba I, delValls A: Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations. Science of The Total Environment 2014, 470-471:356-363. https://doi.org/10.1016/j.scitotenv.2013.09.095 

6. Rodríguez-Romero A, Basallote MD, De Orte MR, DelValls TÁ, Riba I, Blasco J: Simulation of CO2 leakages during injection and storage in sub-seabed geological formations: Metal mobilization and biota effects. Environment International 2014, 68:105-117. https://doi.org/10.1016/j.envint.2014.03.008  

5. De Orte MR, Lombardi AT, Sarmiento AM, Basallote MD, Rodriguez-Romero A, Riba I, Del Valls A: Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison. Marine Environmental Research 2014, 96:136-144.  https://doi.org/10.1016/j.marenvres.2013.10.003 

4. Garrard SL, Hunter RC, Frommel AY, Lane AC, Phillips JC, Cooper R, Dineshram R, Cardini U, McCoy SJ, Arnberg M, et al: Biological impacts of ocean acidification: a postgraduate perspective on research priorities. Marine Biology 2013, 160:1789-1805. https://doi.org/10.1007/s00227-012-2033-3  

3. Basallote MD, Rodríguez-Romero A, Blasco J, DelValls A, Riba I: Lethal effects on different marine organisms, associated with sediment–seawater acidification deriving from CO2 leakage. Environmental Science and Pollution Research 2012, 19:2550-2560. https://doi.org/10.1007/s11356-012-0899-8   

Book Chapters

3.  Rafael Pérez López, M Dolores Basallote: Capítulo 6 - La cotaminación metálica de los ríos Tinto y Odiel. AFECCIÓN A LA RÍA DE HUELVA. In press

2. Julián Blasco, M Dolores Basallote: Chapter Four - Using chemical lines of evidence to address acidification. In CO2 Acidification in Aquatic Ecosystems. Edited by DelValls TA, Riba I: Elsevier; 2022: 45-78 https://doi.org/10.1016/B978-0-12-823552-2.00004-6 

1. Carlos Ruiz Cánovas, Jose Miguel Nieto, Francisco Macías, Maria Dolores Basallote, Manuel Olías, Rafael Pérez‐López, Carlos Ayora. Recovery of Critical Raw Materials from Acid Mine Drainage (AMD) The EIT‐Funded MORECOVERY Project. Chapter 8 -  Recovery of Byproducts from Acid Mine Drainage Treatment. Book Editor(s): Elvis Fosso-Kankeu, Christian Wolkersdorfer, Jo Burgess  https://doi.org/10.1002/9781119620204.ch8