A reading list for new students.
Most of these papers are free in Pubmed, and almost all of them are available in PDF if you look in Google Scholar, and then click on the link that says "all versions".
Plasticity, maps, development
- Debski, E. A., & Cline, H. T. (2002). Activity-dependent mapping in the retinotectal projection. Current opinion in neurobiology, 12(1), 93-99. (pdf link)
- Ruthazer, E. S., & Cline, H. T. (2004). Insights into activity‐dependent map formation from the retinotectal system: A middle‐of‐the‐brain perspective.Journal of neurobiology, 59(1), 134-146.
- Ruthazer, E. S. (2005). You’re perfect, now change—redefining the role of developmental plasticity. Neuron, 45(6), 825-828.
- Akerman, C. J., & Cline, H. T. (2007). Refining the roles of GABAergic signaling during neural circuit formation. Trends in neurosciences, 30(8), 382-389.
- Cline, H., & Haas, K. (2008). The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. The Journal of physiology, 586(6), 1509-1517.
- Ruthazer, E. S., & Aizenman, C. D. (2010). Learning to see: patterned visual activity and the development of visual function. Trends in neurosciences, 33(4), 183-192.
Amphibians and fish as models
- Pratt, K. G., & Khakhalin, A. S. (2013). Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets.Disease models & mechanisms, 6(5), 1057-1065.
- Ganguly, K., & Poo, M. M. (2013). Activity-dependent neural plasticity from bench to bedside. Neuron, 80(3), 729-741.
- Kalueff, A. V., Stewart, A. M., & Gerlai, R. (2014). Zebrafish as an emerging model for studying complex brain disorders. Trends in pharmacological sciences, 35(2), 63-75.
- Liu, Z., Hamodi, A. S., & Pratt, K. G. (2016). Early development and function of the Xenopus tadpole retinotectal circuit. Current Opinion in Neurobiology,41, 17-23.
Architecture of the optic tectum
- Nice video showing visual system of a Xenopus tadpole (from Kurt Haas lab)
- Robles, E., Smith, S. J., & Baier, H. (2011). Characterization of genetically targeted neuron types in the zebrafish optic tectum. Frontiers in neural circuits,5.
- Ciarleglio, C. M., Khakhalin, A. S., Wang, A. F., Constantino, A. C., Yip, S. P., & Aizenman, C. D. (2015). Multivariate analysis of electrophysiological diversity of Xenopus visual neurons during development and plasticity. eLife,4, e11351.
- Liu, Z., Ciarleglio, C. M., Hamodi, A. S., Aizenman, C. D., & Pratt, K. G. (2016). A population of gap junction-coupled neurons drives recurrent network activity in a developing visual circuit. Journal of neurophysiology,115(3), 1477-1486.
Hindbrain architecture and motor control
- Korn, H., & Faber, D. S. (2005). The Mauthner cell half a century later: a neurobiological model for decision-making?. Neuron, 47(1), 13-28.
- Portugues, R., & Engert, F. (2009). The neural basis of visual behaviors in the larval zebrafish. Current opinion in neurobiology, 19(6), 644-647.
- Medan, V., & Preuss, T. (2014). The Mauthner-cell circuit of fish as a model system for startle plasticity. Journal of Physiology-Paris, 108(2), 129-140.
- Frost, B. J., & Sun, H. (2004). The biological bases of time-to-collision computation. Advances in psychology, 135, 13-37.
- Khakhalin, A. S., Koren, D., Gu, J., Xu, H., & Aizenman, C. D. (2014). Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles. European Journal of Neuroscience, 40(6), 2948-2962.