Research Interest
Here you can see three topics I am interested in: ``Variational problems for geometric functionals'', ``Obstacle problems for elliptic and parabolic equations'', and ``Gradient flows: its (full-)convergence V.S. singularity in finite time''.
Please click the v button on the right.
One of famous variational problems for geometric functionals is Euler's elastica problem: minimize the total squared curvature among smooth curves with fixed length and subject to a certain boundary condition. I am interested in variational problems for the following geometric functionals defined among curves: the total squared curvature, so-called p-bending energy, and O’hara energy. In particular, I often try to deduce qualitative properties of minimizers (or critical points) related to ``shapes’’ such as the number of intersections, locally-convexity, and so on.
Here are some of the papers which inspired me (not all!):
J. Arroyo, Ó. Garay, and Á. Pampano, Boundary value problems for Euler-Bernoulli planar elastica. A solution construction procedure (2020).
K. Deckelnick and H.-C. Grunau, Boundary value problems for the one-dimensional Will-more equation (2007).
T. Miura, Elastic curves and phase transitions (2020).
T. Nagasawa, On Möbius invariant decomposition of the Möbius energy (2018).
K. Watanabe, Planar p-elastic curves and related generalized complete elliptic integrals (2014).
These are just a few examples, and indeed there are many other interesting papers related to this field. In addition, I am also interested in uniqueness of minimizers, and to this end I applied so-called shooting method to the Euler-Lagrange equation of the bending energy (e.g. [Y. (2022)]).
There are many contexts in obstacle problems, and in particular I am interested in unilateral obstacle problems for (higher order) elliptic and parabolic equations: the solutions are subject to the constraints that solution must lie above a given function. One of interesting points in this field is regularity of the solutions. In fact, obstacle (function which characterizes the constraint) often prevents from applying a standard regularity theory, and in general it is not a standard matter to discuss the optimal regularity of the solutions to obstacle problems.
Here I collect some of the papers which are close to my interests (not all!):
L. A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator (1979).
A. Dall'Acqua and K. Deckelnick, An obstacle problem for elastic graphs (2018)
T. Miura, Polar tangential angles and free elasticae (2021).
M. Müller, On gradient flows with obstacles and Euler's elastica (2021).
M. Novaga, S. Okabe, Regularity of the obstacle problem for the parabolic biharmonic equation (2015).
I have also been considered the obstacle problems related to the (generalized) bending energy, in particular the optimal regularity of the solutions (see [DMOY (2022)], [Y. (2021)]).
Various parabolic equations can be characterized as a gradient flow, also known as steepest descent flow, such as the heat equation, the porous medium equation, the Chan-Hilliard equation, and so on. The solutions to some gradient flows have two (possibly more than two) possibilities, either global-in-time existence (and convergence to equilibrium) or a singularity in finite time (e.g. blow-up of some norm), and which occurs in general depends on the initial data. For instance, for the curve diffusion flow (gradient flow for the length functional), solutions with certain initial data close to a circle exist global-in-time and converge to a circle; on the other hand there is a solution with winding number zero that shrinks to a point in a finite time. I am interested in such a behavior of gradient flows and some of papers close to my interest are as follows (not all!)
S. Blatt, C. Hopper, and N. Vorderobermeier, A regularized gradient flow for the p-elastic energy (2022).
M. Edwards, A. Gerhardt-Bourke, J. McCoy, G. Wheeler, and V.-M. Wheeler, The shrinking figure eight and other solitons for the curve diffusion flow (2015).
M. Müller, On gradient flows with obstacles and Euler’s elastica (2020).
S. Okabe, and P. Schrader, Convergence of Sobolev gradient trajectories to elastica (preprint).
Various parabolic equations can be characterized as a gradient flow, also known as steepest descent flow, such as the heat equation, the porous medium equation, the Chan-Hilliard equation, and so on. The solutions to some gradient flows have two (possibly more than two) possibilities, either global-in-time existence (and convergence to equilibrium) or a singularity in finite time (e.g. blow-up of some norm), and which occurs in general depends on the initial data. For instance, for the curve diffusion flow (gradient flow for the length functional), solutions with certain initial data close to a circle exist global-in-time and converge to a circle; on the other hand there is a solution with winding number zero that shrinks to a point in a finite time. I am interested in such a behavior of gradient flows and some of papers close to my interest are as follows (not all!)
S. Blatt, C. Hopper, and N. Vorderobermeier,
Grants-in-aid
2024. 04. -- 2028. 03. 楕円函数・双曲線函数の一般化から迫る非線形問題の解析 (課題番号:24K16951), 日本学術振興会 科学研究費, 若手研究.
2022. 08. -- 2024. 03. 高階幾何学的変分問題の研究と勾配流の漸近解析への応用 (課題番号: 22K20339), 日本学術振興会 科学研究費, 研究活動スタート支援.
2019. 04. -- 2022. 03. 高階放物型障害物問題における形状解析~問題の幾何構造と動的障害物の活用~ (課題番号: 19J20749), 日本学術振興会 科学研究費, 特別研究員奨励費.
Academic talks
Jan 22, 2025: Gradient Flows in Geometry and PDE. ``Classification and stability of penalized pinned elasticae''.
Nov 13, 2024: Geometric Analysis and Phenomena. ``Stability of pinned planar p-elasticae''.
Nov 17, 2023: Workshop on Elliptic & Parabolic PDEs 2023. ``On critical points of the p-bending energy''.
Oct 26, 2023: Recent Development of Qualitative Theory on ODEs and its Applications. ``Pinned planar p-elastica''.
Oct 12, 2023: Geometric PDE and Applied Analysis Seminar at OIST. ``Li-Yau type inequality for the p-bending energy’'.
Sep 7, 2023: 2023 Korea-Japan Workshop on Nonlinear PDEs and Its Applications. ``On critical points of the p-bending energy''.
Jun 1, 2023: The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications. ``Complete classification of planar p-elasticae''.
Apr 13, 2023: Geometric Theory of Optimal Control in Lomonosov Moscow State Univ. ``Complete classification of planar p-elasticae''.
Mar 7, 2023: Oberseminar Analysis of the Institute of Pure Mathematics at Freiburg University. ``Complete classification of planar p-elasticae''.
Nov 23, 2022: Forum Math for Industry 2022. ``The critical points of the elastic energy among curves pinned at endpoints'' (Poster), Click HERE.
Feb 21, 2022: The 23rd Northeastern Symposium on Mathematical Analysis. ``An obstacle problem for the elastic energy among graph curves pinned at endpoints''.
Apr 8, 2021: Online Poster Session Young Researchers in PDEs and Geometric Analysis. ``A remark on elastic graphs with the symmetric cone obstacle'' (Poster).
Feb 15, 2021: The 22nd Northeastern Symposium on Mathematical Analysis. ``The critical points of the elastic energy among curves pinned at endpoints'' (Poster).
Feb 17, 2020: The 21st Northeastern Symposium on Mathematical Analysis. ``A shooting approach to an obstacle problem for elastic graphs'' (Poster).
Feb 18, 2019: The 20th Northeastern Symposium on Mathematical Analysis. ``The obstacle problem for the elastic flow defined on planar open curves'' (Poster).
2025年3月4日, RIMS 共同研究 (グループ型A) 『非線形問題における新展開を目指した解析』, ``平面 p-弾性曲線の安定性''.
2025年2月8日, 現象と数理 北九州小研究集会, ``楕円函数の一般化を用いた平面 p-elastica の完全な分類''.
2024年9月20日, 第20回非線型の諸問題, ``Li-Yau type inequality for the p-bending energy''.
2024年9月5日, 日本数学会2024年度秋季総合分科会, ``Stability of pinned planar p-elasticae''.
2024年2月15日--2月16日 (連続講演), 室蘭工業大学応用解析セミナー, ``On critical points of the p-bending energy''.
2023年11月24日, 鳥取PDE研究集会2023, ``An obstacle problem for the p-elastic energy''.
2023年9月20日, 日本数学会2023年度秋季総合分科会, ``An obstacle problem for the p-elastic energy''.
2023年9月12日, 北見工業大学における微分方程式セミナー, ``一般化曲げエネルギーに対する障害物問題''.
2023年7月15日, 第39回さいたま数理解析セミナー, ``Complete classification of planar p-elasticae''.
2023年6月10日, 熊本大学応用解析セミナー, ``A variational problem for the p-bending energy''.
2023年4月28日, 九州関数方程式セミナー, ``一般化曲げエネルギーに対する障害物問題''.
2023年3月18日, 日本数学会2023年度年会, ``Complete classification of planar p-elasticae''.
2022年7月15日, 第259回広島数理解析セミナー, ``An obstacle problem for the p-elastic energy''.
2022年6月3日, 九州関数方程式セミナー, ``A remark on elastic graphs with the symmetric cone obstacle''.
2021年11月12日, RIMS 共同研究(公開型) 『常微分方程式の定性的理論とその応用』, ``On critical points for the p-elastic energy''.
2021年10月21日, 東北大学応用数理解析セミナー, ``On critical points of the p-elastic energy''.
2021年9月14日, 日本数学会2021年度秋季総合分科会, ``端点と曲線長が固定された平面開曲線に対する弾性エネルギーの臨界点について''.
2021年9月1日, 第42回発展方程式若手セミナー, ``端点と曲線長が固定された平面開曲線に対する弾性エネルギーの臨界点について''.
2021年6月28日, RIMS 共同研究(公開型) 『偏微分方程式の解の幾何的様相』, ``Existence and non-existence of elastic graphs with the symmetric cone obstacle''.
2021年3月24日, 第33回さいたま数理解析セミナー, ``The critical points of the elastic energy among curves pinned at endpoints''.
2021年3月15日, 日本数学会2021年度年会, ``Existence and non-existence of elastic graphs with the symmetric cone obstacle''.
2020年12月28日, 第二回楕円型・放物型方程式の集いの会, ``A shooting approach to an obstacle problem for elastic graphs''.
2020年12月15日, 第15回非線形発展方程式セミナー@KUE, ``The obstacle problem for a fourth order semilinear parabolic equation''.
2020年10月31日, 異分野・異業種研究交流会2020, ``A remark on elastic graphs with the symmetric cone obstacle''.
2020年2月13日, 第13回若手のための偏微分方程式と数学解析, ``The elastic flow of graphs with the unilateral constraint''.
2019年9月19日, 2019年度日本数学会秋季総合分科会, ``半線形四階放物型障害物問題の解のエネルギー構造''.
2019年8月29日, 第41回発展方程式若手セミナー, ``The obstacle problem for the elastic flow defined on planar open curves''.
Organizer
2022年8月29日 -- 2022年8月30日, 伊都 PDE ワークショップ.