T. Miura and K. Yoshizawa, Stability of flat-core pinned p-elasticae, arXiv:2508.10314.
M. Müller and K. Yoshizawa, A nongraphical obstacle problem for elastic curves, arXiv:2504.05927.
M. Müller and K. Yoshizawa, Classification and stability of penalized pinned elasticae, arXiv:2409.17877.
T. Miura and K. Yoshizawa, Variational stabilization of degenerate p-elasticae, J. London Math. Soc. (2) 111 (2025), e70096.
T. Miura and K. Yoshizawa, General rigidity principles for stable and minimal elastic curves, J. reine angew. Math. 810 (2024), 253–281.
T. Miura and K. Yoshizawa, Pinned planar p-elasticae, Indiana Univ. Math. J. 73 no. 6, (2024), 2155–2208.
T. Miura and K. Yoshizawa, Complete classification of planar p-elasticae, Ann. Mat. Pura Appl. (4) 203 (2024), 2319–2356.
A. Dall'Acqua, M. Müller, S. Okabe, and K. Yoshizawa, An obstacle problem for the p-elastic energy, Calc. Var. Partial Differential Equations 63 (2024), no. 8, Paper No. 145, 43 pp.
K. Yoshizawa, The critical points of the elastic energy among curves pinned at endpoints, Discrete Contin. Dyn. Syst. 42 (2022), 403–423.
K. Yoshizawa, A remark on elastic graphs with the symmetric cone obstacle, SIAM J. Math. Anal. 53 (2021), 1857–1885 (arXiv:2208.04538).
S. Okabe and K. Yoshizawa, A dynamical approach to the variational inequality on modified elastic graphs, Geom. Flows 5 (2020), 78–101.
S. Okabe and K. Yoshizawa, The obstacle problem for a fourth order semilinear parabolic equation, Nonlinear Anal. 198 (2020), 111902, 23pp.
K. Yoshizawa, ``Existence and non-existence of elastic graphs with the symmetric cone obstacle'' (日本語), RIMS Kôkyûroku 2212.
K. Yoshizawa, ``端点と曲線長が固定された平面開曲線に対する弾性エネルギーの臨界点について'' (日本語), 第42回発展方程式若手セミナー報告集 (2021), 257–264.
K. Yoshizawa, ``The obstacle problem for the elastic flow defined on planar open curves'' (日本語), 第41回発展方程式若手セミナー報告集 (2019), 243–250.
『結び目のエネルギー : 入門と最近の話題』, 述: 長澤壯之, 記: 吉澤研介, 監修: 岡部真也, 東北大学大学院レクチャーノートシリーズ 44 (2022).
The photo of Cherry Blossom: (C)Hirosaki city.