Johann Verwee
PhD in Mathematics — Analytic & Probabilistic Number Theory
Numerical experimentation / scientific computing
PhD in Mathematics — Analytic & Probabilistic Number Theory
Numerical experimentation / scientific computing
Email : mverwee (at) gmail.com
PhD Thesis (in French): Théorèmes d’Erdős-Wintner effectifs (Université de Lorraine and Technische Universität Wien), supervised by Professors Gérald Tenenbaum & Michael Drmota, defended on November 20, 2020.
Agrégation in Mathematics (National Teaching Certification): 2016.
Teaching Experience: Several years of lectures and tutorials in applied mathematics, statistics, and computer science.
Technical Skills: Modeling, probability, statistics, numerical simulations, programming (Python, Matlab, C++), data analysis and visualization.
Research and Publications: Articles in number theory and probability, presentations in international seminars.
With a PhD in Mathematics, I work in analytic and probabilistic number theory, with a focus on quantitative limit laws (Erdős–Wintner, Berry–Esseen), structured digit models, and numeration systems.
My research combines probabilistic and analytic methods and, when useful, numerical experimentation. I have also taught undergraduate and graduate-level mathematics for several years.
I am currently pursuing postdoctoral positions in number theory and related areas, and I welcome collaborations around additive and multiplicative functions, short intervals, and finite-memory (automaton/transducer) models.
6. Short-interval Bombieri-Vinogradov near level one for multiplicative functions of bounded modulus, en cours de rédaction.
5. Uniform Erdős--Wintner theorem in short intervals, en cours de rédaction.
4. A spectral product formula for repunits via a tridiagonal Toeplitz similarity. Soumis.
3. Erdős-Wintner theorem for linear recurrent bases. Soumis.
2. Nonasymptotic Quasi-Monte Carlo Bounds for Sobol' Indices: Bias via Discrepancy and Variance via a Large Sieve (Octobre 2025).
1. Improvement of effective Erdős-Wintner theorem for Zeckendorf expansions (Septembre 2025).
3. Effective Erdős-Wintner theorem for Cantor systems via a trailing-widow method. Accepted for publication in the International Journal of Number Theory (January 2026).
2. Effective Erdős-Wintner theorems for digital expansions (avec M. Drmota). Journal of Number Theory, 229 (Décembre 2021), pages 218-260.
1. Effective Erdős-Wintner theorems (avec G. Tenenbaum), Proc. Steklov Inst. Math., 314 (Septembre 2021), pages 264-278.
My CV is here.
Doctorate thesis (in French): Théorèmes d’Erdős-Wintner effectifs, joint supervision between Université de Lorraine and Technische Universität Wien, under the supervision of Professors Gérald Tenenbaum & Michael Drmota, defended on November 20, 2020.
Master thesis (in French): La fonction lambda de Liouville dans les petits intervalles
Under the direction of Gérald Tenenbaum, Université de Lorraine, 2016.