[13] The generalized Pythagorean theorem on the compactifications of certain dually flat spaces via toric geometry,
Information Geometry, DOI: https://doi.org/10.1007/s41884-023-00123-y (arXiv:2305.08422 [math.SG])
[12] Deformation of Dirac operators along orbits and quantization of non-compact Hamiltonian torus manifolds
Canadian Journal of Mathematics, 1-31., Published online by Cambridge University Press: 09 March 2021. (journal link) (arXiv:2001.02280[math.DG])
[11] Maximum Genus of the Jenga Like Configurations .
Recreational Mathematics Magazine, Volume 5: Issue 9, 49-64. (with R. Akiyama, N. Abe, Y. Inaba, M. Hataoka, S. Ito and S. Seita) (journal link)
[10] A Danilov-type formula for toric origami manifolds via localization of index.
Osaka J. Math. 55(4): 619-645 (October 2018) (journal link) (arXiv:1511.05669 [math.SG])
[9] S1-equivariant local index and transverse index for non-compact symplectic manifolds.
Math. Res. Lett. 23 (2016), no. 5, 1351–1367. (journal link) (arXiv:1303.4485 [math.SG])
[8] Cobordism invariance and the well-definedness of local index.
Ann. Global Anal. Geom. 47 (2015), no. 4, 399–414. (journal link) (arXiv:1409.1344 [math.DG])
[7] 数学科における情報教育の在り方~数学とプログラミングの成績の相関について~.
数学教育学会誌, 第54巻, No.3,4 (2014) , 89-97. (赤池由紀子, 愛木豊彦, 東海林まゆみとの共著)
[6] Torus fibrations and localization of index III: equivariant version and its applications.
Comm. Math. Phys. 327 (2014), no. 3, 665–689. (with M.Furuta and T.Yoshida) (journal link) (arXiv:1008.5007 [math.DG])
[5] Torus fibrations and localization of index II: local index for acyclic compatible system.
Comm. Math. Phys. 326 (2014), no. 3, 585–633. (with M.Furuta and T.Yoshida) (journal link) (arXiv:0910.0358 [math.DG])
[4] External edge condition and group cohomologies associated with the quantum Clebsch-Gordan condition.
Kyushu J. Math. 66 (2012), no. 2, 383–391. (journal link) (arXiv:0708.4190 [math.GT])
[3] Torus fibrations and localization of index I—polarization and acyclic fibrations.
J. Math. Sci. Univ. Tokyo 17 (2010), no. 1, 1–26. (with M.Furuta and T.Yoshida) (journal link) (arXiv:0804.3258 [math.SG])
[2] Heisenberg action in skein theory and external edge condition.
Kyushu J. Math. 64 (2010), no. 1, 59–79. (journal link) (arXiv:1109.5548 [math.GT])
[1] On the functoriality of the Chern-Simons line bundle and the determinant line bundle.
Commun. Contemp. Math. 8 (2006), no. 6, 715–735. (journal link)