遺伝子組換え技術

遺伝子工学

遺伝子DNAを細胞から取り出し、人工的な操作を加えたり、それを利用して遺伝子産物(タンパク質)を細胞につくらせる技術を遺伝子工学(gene technology, genetic engineering)、遺伝子操作(gene manipulation)、遺伝子組み換え技術(recombinant DNA technique)などと呼ぶ。

 遺伝子工学にはいくつかの道具が必要である。1970年に相次いで発見された制限酵素逆転写酵素は、遺伝子工学を現実のものとした。制限酵素はDNAの特定の塩基配列を認識して切断するため、目的遺伝子の切り出しに欠かせない。逆転写酵素はmRNAに相補的な放射能標識したcDNAを作るのに用いられる。cDNAは目的遺伝子の検出やそれ自体のクローニングに利用される。リガーゼはDNAの切れ目をつなぐ酵素で、 組み換え体(recombinant)を作成するのに用いられる。遺伝子を組み込む相手として用いられるDNAをベクターと呼ぶ。現在広く用いられているベクターとしては、ファージ、動植物ウィルスおよびプラスミドなどがある。プラスミドは多くのバクテリアに存在する小型の核外遺伝子で、組み換え体を選別するためのマーカー遺伝子や複製開始点を持つ。この他、長鎖のDNAを組み込むため、lファージとプラスミドを基に人工的に作られたコスミド酵母の人工染色体などが用いられる。組み換え体を取り込ませ増やすためには、大腸菌、酵母などの宿主細胞が必要である。

 組み換え体を宿主細胞に入れ、目的遺伝子を増やしてDNA断片を量的に得る操作をDNAのクローニングと呼ぶ。その塩基配列を決定することによって、遺伝子の構造や遺伝子の制御の仕組みを知ることが可能となった。一方、組み換え体を用いて、目的のタンパク質を作らせることも出来る。ヒトのタンパク質を微生物で作らせる場合、目的の遺伝子をリボソーム結合部位(SD配列)の後に組み込む必要がある。このために開発されたベクターを特に発現ベクターと呼ぶ。近年、DNAの新しい増殖法としてPCR法が開発され、微量の試料からでもDNAをクローニングできるようになった。

《基本的な手順》

1. 目的のDNA断片の調製

2. 組換え体DNAの作成

3. 組換え体を宿主細胞に導入

4. 組換え体を含む細胞の検出と選別DNAのクローニング(cloning)

宿主細胞からの組換え体DNAの抽出

目的DNAの切り出し

DNAの1次構造解析 組換え体を含む細胞の増殖

有用物質の生産

遺伝子工学の道具

核酸分解酵素

目的遺伝子を切り出したり、末端を加工する酵素。制限酵素が特に有用である。

逆転写酵素 (reverse transcriptase)

mRNAを鋳型として相補的なDNA(cDNA*)をつくる酵素。校正機構はもたない。

* complementary DNAの略。

DNAリガーゼ

DNAの切れ目をつなぐ酵素(のりの役目)

ベクター「運搬者(vector)」

目的遺伝子を組み込む相手。(例) プラスミド、バクテリオファージ、コスミド、酵母の人工染色体など

宿主細胞

目的遺伝子を取り込ませ増やす役目 (例) 大腸菌、枯草菌、酵母、細胞株など

cDNAの調製

 細胞で発現している遺伝子産物の構造を調べる目的で,mRNAのヌクレオチド配列を決定することが行われる。mRNAは3’末端にポリ(A)鎖をもつので,オリゴ(T)をプライマーとして逆転写酵素を作用させると,mRNAに相補的なDNA鎖が合成できる。アルカリ処理でmRNAを分解後,生じた1本鎖DNAを鋳型として逆転写酵素またはDNAポリメラーゼで2本鎖にし,クローニングに供される。

[逆転写酵素の立体構造]

レトロウィルスHIV-1の酵素で,二量体である。

阻害剤であるdipyridodiazepinone nevirapineが分子左下方に結合している。

制限酵素

DNAの特定の塩基配列を認識して切断する酵素を制限酵素(restriction enzyme)という。特に、II型の制限酵素は遺伝子工学においてDNAの断片化に頻繁に用いられる。(遺伝子工学の道具

I 型制限酵素

特異的な認識部位でDNAに結合し、認識部位から様々な距離(400~7000bp)で二本鎖DNAを切断する。活性には、Mg2+, ATP, S-アデノシルメチオニンが必要で、ATPの加水分解に伴って切断が起こる。メチラーゼ活性を併せもつ。切断個所には再現性が乏しく、また、DNAのメチル化を引き起こすため、遺伝子工学には使えない。

II 型制限酵素

II型の酵素は4~8塩基対の回文構造を認識するものが多い。400種以上知られているが、その内100種ほどが市販されている。遺伝子工学になくてはならない酵素である。表 のように、分解の様式から、付着末端を生じる酵素群と、平滑末端を生じる酵素群に大別される。I型やIII型と異なり、DNAのメチル化は起こさない。同一の基質特異性をもつメチル化酵素は別に存在する。同じ配列を認識するものでも切断個所を異にする酵素もあり、アイソシゾマー(isoschizomer)と呼ばれる。

代表的なII型の制限酵素とその認識部位

縦線が切断個所

[DNA鎖に結合した制限酵素]

EcoRV がDNA鎖を切断している様子をDNA鎖の真上方向からから見た図。 

EcoRVは次のような回文構造

  GATATC

  CTATAG

の真中を切断する。

III型制限酵素

特異的な認識部位に結合し、それから約25bp離れた位置を切断する。活性には、ATPとS-アデノシルメチオニンが必要であるが、ATPの加水分解は伴わない。I型と同様、メチラーゼ活性を併せもつ。メチラーゼ(メチル化)活性は、自身の制限酵素で自分のDNAを分解しないために、制限酵素部位をメチル化によってマスクするためにある。

組換え体の作製

目的のDNA断片の調整の流れ

細胞からのトータルRNAの抽出→mRNA精製→逆転写反応→cDNA→PCR→電気泳動→目的DNA断片の可視化→ゲルから抽出

DNA断片をベクターに組み込む

付着末端を生じる制限酵素でDNA断片が切り出せた場合

制限酵素法:突出した末端をベクターとのアニーリング部位に利用する

平滑末端を生じる制限酵素でDNA断片が切り出せた場合

ホモポリマー法:短いオリゴヌクレオチドをDNA断片とベクターに付けてアニーリング部位にする

T4リガーゼ結合法:T4ファージのDNAリガーゼが、平滑端の2本鎖DNAを直接結合することを利用する。

  通常のリガーゼでも、基質濃度を高くすれば、直接、平滑端をつなぐことができる。

[制限酵素切断末端をのりしろにする方法]

付着端を生じる制限酵素でDNA断片が切り出せた場合はベクターも同じ制限酵素で切り、切断片をのりしろにしてアニールさせる。切れ目をリガーゼでつなぐ。

この方法では目的遺伝子DNAが逆向きに入ることもある。それを避けるためには、2種の制限酵素で断片化すればよい。

[ホモポリマーを結合させてのりしろにする方法]

平滑端のDNA断片しか得られなかった場合は、末端転移酵素を用いて,DNA断片にオリゴ(T)、ベクターにオリゴ(A)を結合させてのりしろにする。

このやり方では、後で同じ酵素で切り出せない。そこで制限酵素部位を持つリンカーをつけるとよい。

クローニングベクター

クローニング用ベクターの条件

1. 宿主細胞中で自己複製能を示す

2. 宿主細胞と容易に区別しうる表現型の遺伝子をもつ

3. 制限酵素切断部位を少なくとも1つもつ

4. 宿主細胞の外では生存できないもの

プラスミド系ベクター

 プラスミド(plasmid)とは、複製開始点など遺伝に必要な仕組みを備えた小型(1~200kbp)の環状二本鎖DNAである。細菌中で自立増殖が可能で、染色体DNAとは独立に複製される。細胞内に1~数10個(クローニングに用いられるものは細胞内にふつう10~200個)存在できる。抗生物質耐性遺伝子を持ち、これが組換え体作成のためのマーカー遺伝子として利用される。天然のプラスミドは制限酵素部位が多すぎるため、人工的に改変されたものが用いられる。

 プラスミドベクターには5~10kbまでのDNA断片を組み込むことができる(これ以上大きなDNAを組み込むと不安定になる)。

→ 大腸菌のpBR322プラスミドは現在使用されているものの原型である。pBR322プラスミドの1次構造

いろいろなプラスミドベクター

プラスミドpBR322の構造

pBR322は大腸菌を宿主とする古典的人工プラスミドベクターで,環状二本鎖DNA上にテトラサイクリン耐性遺伝子とアンピシリン耐性遺伝子をもつ。このプラスミドを基に改良型の多くのプラスミドベクター(pUC系ベクターなど)がつくられた。

 配列の最初と最後の6文字はEcoRI 部位(GAATTC)である。

ファージベクター

lファージは大腸菌に寄生するウィルスで、クローニングによく用いられる。48.5kbpの2本鎖線状DNAである。分子中央1/3はウィルスを感染させるのに必要ではないので、外来のDNAとそっくり置換が可能である。ここに、15~20kbの外来DNAを組み込める。

ファージDNAが頭部に収納されるためにはcos部位と呼ばれる12塩基の相補的な2つの1本鎖配列が両端にあり、これらが36~51kb離れていることが必要である。ファージタンパク質とDNAを試験管内で混ぜるだけで、成熟ファージ粒子が出来あがる(in vitro packaging)。

赤はファージの感染に不要な部分。

遺伝子ライブラリやcDNAライブラリの作成

 in vitro packagingでファージ頭部に入りうるDNAの大きさには制限がある(野生ファージゲノムの78~105%の長さ)。1つの生物の遺伝子を制限酵素で分解して得られたDNA断片をファージに組み込むと、ほぼ一定の長さのものだけを詰め込むことができることになる。このようなDNAの集合物を遺伝子ライブラリという。ファージに組み込まれたDNAは安定に保存できるし、増やすのも容易なので、多くの人が迅速に利用できる。

 細胞の全mRNAをcDNAに変え、同様にパッケージしたものをcDNAライブラリと呼ぶ。

コスミド・ベクター

 lファージの2つのcos部位をプラスミドベクター上に適当な距離に置けば、ファージにin vitro packagingが可能。この目的で作られた小型(4~6kb)のベクターをコスミドという(図 9.8)。プラスミドと同様にマーカー遺伝子や複製開始点をもつのでファージ感染後、細胞内ではプラスミドとして増殖する。

 コスミドには約45kb程の長鎖のDNAを組み込めるのが特徴。

コスミドベクターpJB8とパッケージング

酵母人工染色体YAC, yeast artificial chromosome)

YACは酵母での複製に必要なものを全て備えた線状DNA断片で、複製起点(自立複製配列ARS)、セントロメア(CEN)、テロメア(TEL)をもつ(下図)。YACには数100kbのDNA断片を組み込める。

DNAのクローニング

1. 目的遺伝子DNAの入った細胞を大量培養し、DNAを抽出

2. 組換え体を単離

3. 制限酵素で目的DNAを切り出す

4. 大量の目的DNA断片をえる(クローン化DNA)

宿主細胞への導入

大腸菌へのプラスミドの取り込み

菌を氷冷下、CaCl2で処理すると、DNAを取り込むようになる(コンピテントな状態という)。

ベクターとしてファージを利用する

感染によって取り込ませる。菌に入ったファージは隣の菌に次々と感染し、溶菌班(プラーク)を形成。

動物細胞へのDNAの取り込み(トランスフェクションという)

カルシウム-リン酸共沈法(細胞の食作用を利用)その他、種々の方法がある。

組換え体の発現

目的遺伝子の入った細胞を使ってタンパク質を生産したいが?

このためには、宿主細胞のプロモーター、リボソーム結合(Shine-Dalgarno)配列を配置したベクターの適切な位置に目的DNAを組み込む必要がある。

目的遺伝子のタンパク質の合成

タンパク質合成能を持つベクター(発現ベクター)が用意されている。lacラクトースオペロン), trpトリプトファンオペロン), taclactrpオペロンを融合したもの)のプロモーターを組み込んだ発現プラスミド(大腸菌)、バキュロウィルス由来のベクター(昆虫細胞中で糖タンパク質も作れる)、酵母の発現ベクターなどがよく使われる。

発現プラスミドの構成

プラスミドpU18/19はこの目的に利用可能。マルチクローニング部位の前にプロテアーゼ認識部位を入れておくと、後で遺伝子産物を切り出せる。