複製

大腸菌の複製機構

DNAの複製は多くのタンパク質や酵素が関与する複雑な機構である。

1) ジャイレース(II型トポイソメラーゼ)がDNA二本鎖を切り、鎖を回転させた後、切れ目を閉じることによって複製フォーク前方の正の超らせんを解消する → らせんの巻き数を減らす。

ジャイレースAの構造

ジャイレースは通常A2B2の四量体を形成する。

ジャイレースBの構造

2) DnaAタンパク質が複製起点を認識し、会合体を作る。近傍のDNA鎖のらせんが巻き戻される。

大腸菌の複製起点におけるラセンの巻き戻し

3) ヘリカーゼ(DnaBタンパク質)がATPの加水分解のエネルギーで水素結合と疎水結合を切り、二本鎖DNAを巻き戻す。

ヘリカーゼの構造

分子の下側に斜めに深い溝がある。ここにDNAが結合する。

4) 一本鎖DNA結合タンパク質(single-strand binding protein, SSB)がDNAの一本鎖部分に結合し、再会合(アニーリング)を防ぐ。

折れ曲がった1本鎖DNAに結合したSSB

5) リーディング(leading)鎖の合成

・プライマーゼ(DnaGタンパク質)によって、親鎖の3'末端に相補的なプライマーがつくられる。

・クランプ装着因子(特異的ATPaseで,g複合体という)がクランプ分子をDNA二本鎖に装着する。DNAポリメラーゼIIIがクランプに結合し,プライマーの後に新しい鎖を連続的に合成していく。

[Leading鎖の合成] 緑色はクランプ(bサブユニット

もし,塩基配列に間違いが生じた場合ポリメラーゼIIIはその3'→5'エキソヌクレアーゼ活性を利用して誤ったヌクレオチドを切除し,正しいヌクレオチドを挿入する(校正)。

DNAポリメラーゼⅢの触媒機構

左(赤)はクランプ,中央(濃緑)はポリメラーゼの触媒サブユニット,右(茶)は一本鎖DNA結合タンパク質(SSB)である。中央には二本鎖と一本鎖のDNAが見える。

6) ラギング(lagging)鎖は岡崎断片単位で不連続に合成される。

・プライマーゼによって、RNAプライマーがつくられる。

大腸菌プライマーゼの構造

DNAポリメラーゼIIIがプライマーの後に新しい鎖を合成する==>複製方向と逆向き。DNAポリメラーゼは二量体を構成しているため、lagging鎖はleading鎖と一緒につくられる。ただし、複製される位置はleading鎖よりもずっと遅れる。合成は1つ前のプライマーの位置で終る。

・岡崎断片(1000~2000塩基対)が形成される。

lagging鎖の合成

7) DNAポリメラーゼIがその5'→3'エキソヌクレアーゼ活性を利用して,岡崎断片の先頭のRNAプライマーを分解しながらDNA鎖の隙間を埋める(熟成)。

8) リガーゼが岡崎断片同士をつなぐ。

9) II型トポイソメラーゼが2つの娘鎖を分離する。

大腸菌におけるDNA複製の全体の流れを示す。

真核細胞の複製機構

真核細胞のDNA複製にはまだ不明な点が多いが、基本的には原核細胞と類似している。

以下に大きな違いを記す。

 1) ヘリカーゼで一本鎖になったDNAには、大腸菌のSSBに相当する複製因子A(RPA)が結合する。


DNAに結合したヒト一本鎖DNA結合タンパク質(RPA)の立体構造

DNA鎖の方向から見た図

2) leading鎖とlagging鎖は別々のポリメラーゼで合成される。

ポリメラーゼa(プライマーゼsubunitをもつ)はプライマーと短いleading鎖を合成する。

RFC(クランプ装着因子)がクランプ(3量体で環状をなし,PCNA[増殖細胞核抗原の略]という)を装着する。

ヒトPCNA

(proliferating cell nuclear antigen)

構造がほとんど似ていないにも関わらず,ヒトのクランプ(PCNA)は大腸菌DNAポリメラーゼIIIのbサブユニットとそっくりの構造をしている。中央にたくさんのa-へリックスで囲まれた径35Åの穴があり,DNAポリメラーゼdをDNAに固定する役割をもつ。図で色分けしたように,このタンパク質は3量体で構成されている。ポリメラーゼaと違って,ポリメラーゼdが長いDNA鎖を複製できるのはこのタンパク質のおかげである。

・PCNAがポリメラーゼaを排除した後、ポリメラーゼdが結合する。

・ポリメラーゼd/PCNA/RFC複合体が残りの鎖を連続的に合成する。

・lagging鎖では、ポリメラーゼaと複製因子C(RF-C)がプライマーをつけた後、岡崎断片を合成する。

 3) プライマーRNAはリボヌクレアーゼH1とともに,構造特異的エンドヌクレアーゼFEN1で分解される。

隙間はポリメラーゼdがうめる(熟成)。

 4) 岡崎断片は大腸菌の場合より短く、100~200塩基対程度である。

 5) 複製の進行に伴い、ヌクレオソーム構造を分解したり、新生(ヒストンの倍化)する必要がある。

 6) 真核細胞のDNAは線状であるために、テロメア問題が生じる。

【ヒトの細胞のDNA】

23対、46本の染色体(2n)

DNA鎖の長さ=99cm/haploid (n)

29億塩基対/haploid

S期の長さ=約10時間

複製の速さ=約50塩基対/秒

(大腸菌:500塩基対/秒)

DNAの複製起点=約100ヶ所/染色体

ヒトのゲノムDNAは長い。

短いS期(8~10時間)で、全体をどうやって複製するのか?

 ==>複製起点がたくさんある。

このような複製単位をレプリコンと呼ぶ。

複製起点は電子顕微鏡で観察でき、複製バブルと呼ばれる。

テロメアの合成

テロメアの構造

 線状染色体の末端をテロメア(telomere)という。テロメアは固有の塩基配列が何度も繰り返した構造をしている。たとえばヒトではTTAGGG,テトラヒメナではTTGGGGが1000回以上繰り返している。また,この鎖の末端は12~16塩基ほど突出している。テロメアにはTRF1やTRF2といった,特有のタンパク質複合体が結合してT-loop構造をとり,突出した末端を安定化している。


テロメアは細胞の寿命を決める時計

 テロメアがある長さまで短くなると、細胞はそれ以上細胞分裂ができなくなる。テロメアは細胞の寿命を決める時計の役目を果たしている。ヒトの寿命もこれと関連していることが示唆されている。

真核生物は直線状DNAをもつことで遺伝子の相同組換えを容易にし、遺伝子を改良する仕組みを得た。しかし同時に、限られた寿命を背負いこんだことになる。

線状DNAの複製のたびにテロメアは短くなる(テロメア問題)

 leading鎖上のDNAポリメラーゼは合成を終了すると離れてしまうが、その時、lagging鎖の方の染色体末端のテロメア領域の一部はまだ複製に手がついていない。従って、複製のたびにlagging鎖の5'端は短くなっていく。また、leading鎖の5'端のRNAプライマーも後で分解されるので、こちらも短くなる。


真核細胞の直線状DNA複製におけるテロメア問題

テロメアの延長

 短くなった娘鎖のテロメア部分はテロメラーゼで延長される。ただし、ヒトの場合、この機構は生殖細胞やある種の癌細胞に限定される。体細胞にはテロメラーゼが発現されていないため、複製のたびにlagging鎖の短縮が起こる。

テロメラーゼによるテロメアの延長機構

lagging鎖は延長された親鎖を鋳型としてさらに伸ばされる

複製の諸問題

DNAの半保存的複製に関する諸問題

複製の方法

 一般には(A)のように、複製は2方向に進行する。しかし、(B)や(C)のような例もある。

(A) 2方向複製(q型) (2本鎖の一起点から両方向へ伸長) 一般の場合

(B) 1方向複製 (一起点から一方向へ伸長)アデノウィルスの場合

(C) ローリングサークル型 (DNAの半保存的複製)ファージfX174の場合

複製の開始点(複製起点 replication origin)の問題複製はDNAのどこから開始されるのか?)


細菌の複製起点は、特有の短い繰り返し配列からなる約240塩基対の領域で,普通,1ヶ所ある。

酵母では、自律複製配列(autonomously replicating sequence, ARS)と呼ばれる共通配列がある。

DNAの超ラセンをどうやってほぐすのか?


 原核細胞のDNAは環状二本鎖である。しかも,それがさらにラセンを形成し,超ラセン状になっている。真核細胞でもDNAはソレノイドやループ構造をとっている。この超ラセンやループをほぐすのが,Ⅰ型やⅡ型トポイソメラーゼである。

 Ⅰ型トポイソメラーゼ: DNA鎖を一本だけ切断し,ラセンを巻き戻した後,二本鎖に戻す。

 Ⅱ型トポイソメラーゼ: DNA二本鎖を切断し,ラセンを巻き戻した後,二本鎖を再結合。

超ラセン  緩んだラセン

[Ⅰ型トポイソメラーゼの作用]

トポイソメラーゼはDNA複製だけでなく,細胞周期でのDNAの折りたたみや巻き戻し,転写の際のDNAの巻き戻しなどにも関与する。

ラギング(lagging)鎖はどのようにして合成されるか?


 DNAの2本の鎖は逆平行。3'→5'方向の鎖と5'→3'方向の鎖がある。3'→5'方向の親鎖から合成される娘鎖をリーディング鎖,先行鎖(leading鎖)という。DNAポリメラーゼが読み取る方向と合成方向が一致する。

 一方,5'→3'方向の親鎖から合成される娘鎖をラギング鎖,遅延鎖(lagging鎖)という。配列を読み取る方向と合成方向が逆になる! lagging鎖をどうやってつくるのか?

DNAポリメラーゼが間違ったヌクレオチドを結合させたらどうするか?


1)DNAポリメラーゼ自身のもつ3'->5'エキソヌクレアーゼ活性によりミスマッチヌクレオチドはすぐに分解され、正しい配列に訂正される(校正機能:DNA合成,DNAポリメラーゼ:参照)。

2)ミスマッチDNA修復が機能し,ミスマッチを取り除く(DNA修復:参照)。