Vaccine

& Prevention

Vacina & Prevenção

Keywords: 3D models, Bacillus Calmette-Guérin, B cell-receptor (BCR) changes, Bats, BCG vaccination, Binding, Bioinformatics, Coronavirus, CRISPR, Cryptic transmission, Environmental DNA, Genomic epidemiology, Genomic plasticity, Genotyping, Glycan shield, Glycosylated protein, Host cell recognition, Immune cell profiling, Immunoinformatics, Immunity, Machine learning, Mammalian viruses, MEV, Molecular immune pathogenesis, Multiepitope based vaccine, Mutation, Network analysis, Non-invasive surveys, Open Reading Frame 1ab, ORF3a, Polymorphic quasispecies, Polyproline regions, PPRs, Prophylactic Antiviral CRISPR in huMAN cells (PAC-Man), Prophylaxis, Pseudovirus, Receptors, Reverse vaccinology, S309, Sarbecovirus subgenus, Silico approaches, Spike protein, Surveillance, Transmission, Tuberculosis, Vaccine candidates, Vaccine development, Vaccination strategy.
Palavras-chave: Alterações no receptor de células B (BCR), Análise de rede, Aprendizado de máquina, Bacilo Calmette-Guérin, CRISPR, BCG, Binding, Bioinformática, Candidatos a vacinas, Coronavírus, CRISPR, Desenvolvimento de vacina, DNA ambiental, Epidemiologia genômica, Escudo glicano, Estratégia de vacinação, Fase de Leitura Aberta 1ab, Genotipagem, Imunidade, Imunoinformática, Mamíferos, MEV, Modelis 3D, Monitoramento, Morcegos, Mutações, ORF3a, Perfil de células imunes, Pesquisas não-invasivas, Plasticidade genômica, Poliprolina, PPRs, Prophylactic Antiviral CRISPR in huMAN cells (PAC-Man), Profilaxia, Proteína glicosilada, Proteína S, Pseudovírus, Quasi-espécies polimórficas, Receptores, Reconhecimento da célula hospedeira, Resposta imune molecular, S309, Sarbecovirus subgenus, Sílica, Transmissão, Transmissão críptica, Tuberculose, Vacina recombinante, Vacinação, Vacinologia reversa.
NOTE: most recent articles always on top | artigos mais recentes sempre em cima

Vaccine Targets & Development | Alvos & Desenvolvimento de Vacina

Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. (Apr 19, 2020). Rapid development of an inactivated vaccine for SARS-CoV-2. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.17.046375

Xiong H, Wu Y, Cao J, Yang R, Ma J, Qiao X, et al. (Apr 13, 2020). Robust neutralization assay based on SARS-CoV-2 S-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressed BHK21 cells. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.08.026948

Grant OC, Montgomery D, Ito K, Woods RJ (Apr 9, 2020). 3D Models of glycosylated SARS-CoV-2 spike protein suggest challenges and opportunities for vaccine development. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.07.030445

Pinto D, Park Y-J, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al. (Apr 9, 2020). Structural and functional analysis of a potent sarbecovirus neutralizing antibody. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.07.023903

Yarmarkovich M, Warrington JM, Farrel A, Maris JM (Apr 2, 2020). A SARS-CoV-2 Vaccination Strategy Focused on Population-Scale Immunity. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.31.018978

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M (Mar 28, 2020). Site-specific analysis of the SARS-CoV-2 glycan shield. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.26.010322

Milken Institute (updated Mar 23, 2020). COVID-19 Treatment and Vaccine Tracker. https://milkeninstitute.org/covid-19-tracker

Qamar MTu, Rehman A, Ashfaq UA, Awan MQ, Fatima I, Shahid F, Chen LL (Mar 22, 2020). Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.02.28.970343

Ong E, Wong MU, Huffman A, He Y (Mar 21, 2020). COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.20.000141

Prachar M, Justesen S, Steen-Jensen DB, Thorgrimsen S, Jurgons E, Winther O, Bagger FO (Mar 21, 2020). COVID-19 Vaccine Candidates: Prediction and Validation of 174 SARS-CoV-2 Epitopes. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.20.000794

Ibrahima IM, Abdelmaleka DH, Elshahata ME, Elfikya AA (Mar 10, 2020). COVID-19 spike-host cell receptor GRP78 binding site prediction. Journal of Infection [CORR. PROOF]. https://doi.org/10.1016/j.jinf.2020.02.026

Robson B (Feb 26, 2020). Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Computers in Biology and Medicine [CORR. PROOF]. https://doi.org/10.1016/j.compbiomed.2020.103670

Immunity Studies | Estudos sobre Imunidade

Weitz JS, Beckett SJ, Coenen AR, et al. (May 7, 2020). Modeling shield immunity to reduce COVID-19 epidemic spread. Nat Med [ONLINE]. https://doi.org/10.1038/s41591-020-0895-3

Wajnberg A, Mansour M, Leven E, et al. (May 5, 2020). Humoral immune response and prolonged PCR positivity in a cohort of 1343 SARS-CoV 2 patients in the New York City region. medRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.30.20085613

Wrapp D, Vlieger DD, Corbett KS, ..., Schepens B, Saelens X, McLellan JS (May 5, 2020). Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 181:1-12. https://doi.org/10.1016/j.cell.2020.04.031

Ling N, Fang Y, et al. (May 3, 2020). Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity [PRE-PROOF]. https://doi.org/10.1016/j.immuni.2020.04.023

Long Q, Liu B, et al. (Apr 29, 2020). Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med [ONLINE]. https://doi.org/10.1038/s41591-020-0897-1

WHO (Apr 24, 2020). "Immunity passports" in the context of COVID-19. WHO [GUIDANCE]. https://www.who.int/news-room/commentaries/detail/immunity-passports-in-the-context-of-covid-19

Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, et al. (Apr 22, 2020). Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors. medRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.17.20061440

Wang B, Wang L, Kong X, Geng J, Xiao D, Ma C, et al. (Apr 21, 2020). Long-term Coexistence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) with Antibody Response in Coronavirus Disease 2019 (COVID-19) Patients. medRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.13.20040980

Flodgren GM (Apr, 2020). COVID-19-EPIDEMIC: Immunity after SARS-CoV-2 infection—a rapid review. NIPH [MEMO]. https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2020/immunity-after-sars-cov-2-infection-report-2020.pdf

Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. (Apr 6, 2020). Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.30.20047365

Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. (Apr 1, 2020). Virological assessment of hospitalized patients with COVID-2019. Nature [ONLINE]. https://doi.org/10.1038/s41586-020-2196-x

Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, et al. (Mar 27, updated Mar 31, 2020). Immune Cell Profiling of COVID-19 Patients in the Recovery Stage by Single-Cell Sequencing. medRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.23.20039362

Dong C, Ni L, Ye F, Chen M-L, Feng Y, Deng Y-Q, et al. (Mar 20, 2020). Characterization of anti-viral immunity in recovered individuals infected by SARS-CoV-2. medRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.17.20036640

Bao L, Deng W, Gao H, Xiao C, Liu J, Xue J, et al. (Mar 14, 2020). Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.13.990226

Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, et al. (2017). T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Research 137, 82-92. https://doi.org/10.1016/j.antiviral.2016.11.006

Mutation Studies | Estudos sobre Mutação

Korber B, Fischer W, Gnanakaran SG, Yoon H, Theiler J, Abfalterer W, et al. (May 5, 2020). Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.29.069054

Yao H, Lu X, Chen Q, Xu K, Chen Y, Cheng L, et al. (Apr 23, 2020). Patient-derived mutations impact pathogenicity of SARS-CoV-2. medRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.14.20060160

Farkas C, Fuentes-Villalobos F, Garrido JL, Haigh JJ, Barría MI (Apr 12, 2020). Insights on early mutational events in SARS-CoV-2 virus reveal founder effects across geographical regions. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.09.034462

Forster P, Forster L, Renfrew C, Forster M (Apr 8, 2020). Phylogenetic network analysis of SARS-CoV-2 genomes. PNAS [ONLINE]. https://doi.org/10.1073/pnas.2004999117

Karamitros T, Papadopoulou G, Bousali M, Mexias A, Tsiodras S, Mentis A (Mar 28, 2020). SARS-CoV-2 exhibits intra-host genomic plasticity and low-frequency polymorphic quasispecies. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.27.009480

Issa E, Merhi G, Panossian B, Salloum T, Tokajian ST (Mar 28, 2020). SARS-CoV-2 and ORF3a: Non-Synonymous Mutations and Polyproline Regions. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.27.012013

Yin C (Mar 24, 2020). Genotyping coronavirus SARS-CoV-2: methods and implications. arXiv:2003.10965 [PREPRINT]. https://arxiv.org/abs/2003.10965

Wen F, Yu H, Guo J, Li Y, Luo K, Huang S (Mar 4, 2020). Identification of the hyper-variable genomic hotspot for the novel coronavirus SARS-CoV-2. J Infect [ONLINE]. https://doi.org/10.1016/j.jinf.2020.02.027

Bedford T (Mar 2, 2020). Cryptic transmission of novel coronavirus revealed by genomic epidemiology. Bedford Lab [BLOG]. https://bedford.io/blog/ncov-cryptic-transmission/

Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. (Feb 24, 2020). Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 6, 11 (2020). https://doi.org/10.1038/s41421-020-0147-1

BCG Vaccine against COVID-19? | Vacina BCG contra COVID-19?

Szigeti R, Kellermayer D, Kellermayer R (Apr 11, 2020). BCG protects against COVID-19? A word of caution. medRxiv [PREPRINT]. https://doi.org/10.1101/2020.04.09.20056903

UMC Utrecht, Radboud University (updated Apr 3, 2020). Reducing Health Care Workers Absenteeism in Covid-19 Pandemic Through BCG Vaccine (BCG-CORONA). NIH—US National Library of Medicine [CLINICAL TRIAL]. https://clinicaltrials.gov/ct2/show/NCT04328441

Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH (Mar 28, 2020). Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.24.20042937

Environmental DNA Surveys | Inspeções de DNA Ambiental

Alfano N, Dayaram A, Axtner J, Tsangaras K, Kampmann ML, Mohamed A, et al. (Mar 29, 2020). Non-invasive surveys of mammalian viruses using environmental DNA. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.26.009993

Markotter W, Geldenhuys M, Vuren PJV, Kemp A, Mortlock M, Mudakikwa A, et al. (Jul 2, 2019). Paramyxo- and Coronaviruses in Rwandan Bats. Trop. Med. Infect. Dis. 4(3), 99. https://doi.org/10.3390/tropicalmed4030099

Rizzo F, Edenborough KM, Toffoli R, Culasso P, Zoppi S, Dondo A, et al. (Dec 22, 2017). Coronavirus and paramyxovirus in bats from Northwest Italy. BMC Vet Res. 13: 396. https://doi.org/10.1186/s12917-017-1307-x

Other Prophylactic Studies | Outros Estudos Profiláticos

Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, et al. (Mar 14, 2020). Development of CRISPR as a prophylactic strategy to combat novel coronavirus and influenza. bioRxiv [PREPRINT]. https://doi.org/10.1101/2020.03.13.991307

Gates B (Feb 28, 2020). Responding to Covid-19 — A Once-in-a-Century Pandemic? N Engl J Med 2020 [ONLINE]. https://doi.org/10.1056/NEJMp2003762

Gates B (May 31, 2018). Innovation for Pandemics (Shattuck Lecture). N Engl J Med 2018; 378:2057-2060. https://doi.org/10.1056/NEJMp1806283

Gates B (Apr 9, 2015). The Next Epidemic — Lessons from Ebola. N Engl J Med 2015; 372:1381-1384. https://doi.org/10.1056/NEJMp1502918