Мы продолжаем изучать позиционные системы счисления. Вы узнали, что позиционные системы счисления бывают разные: десятичная, двоичная, восьмеричная и шестнадцатеричная. Вы научились переводить числа из одной системы счисления в другую. Но зачем нам с вами это надо? Конечно для того, чтобы производить расчеты. С 1 класса нас учат производить расчеты в десятичной системе счисления. А как вы думаете, можно ли производить расчеты в произвольной позиционной системе счисления? И зачем это нужно?
Двоичная система счисления издавна была предметом пристального внимания многих ученых. Первый кто заговорил о двоичном кодировании, был Лейбниц Готфрид Вильгельм. Он написал трактат «Expication de l'Arithmetique Binary» — об использовании двоичной системы счисления в вычислительных машинах. В рукописи на латинском языке, написанной в марте 1679 года, Лейбниц разъясняет, как выполнять вычисление в двоичной системе, в частности умножение, а позже в общих чертах разрабатывает проект вычислительной машины, работающей в двоичной системе счисления. Вот что он пишет: « Вычисления такого рода можно было бы выполнять и на машине». Эти слова подчеркивают универсальность алфавита, состоящего из двух символов.
Все позиционные системы счисления “одинаковы”, а именно, во всех них выполняются арифметические операции по одним и тем же правилам:
— справедливы одни и те же законы арифметики: коммутативный (переместительный), ассоциативный (сочетательный), дистрибутивный (распределительный);
— справедливы правила сложения, вычитания, умножения и деления столбиком.
Сложение в двоичной системе ничем не отличается от сложения в десятичной системе. Главное помнить, алфавит содержит всего две цифры: 0 и 1. Поэтому когда мы складываем 1 + 1, то получаем 0, и увеличиваем число еще на 1 разряд. Посмотрите на пример выше:
Начинаем складывать как и привыкли справа налево. 0 + 0 = 0, значит записываем 0. Переходим к следующему разряду.
Складываем 1 + 1 и получаем 2, но 2 нет в двоичной системе счисления, а значит мы записываем 0, а 1 добавляем к следующему разряду.
У нас получается в этом разряде три единицы складываем 1 + 1 + 1 = 3, этой цифры также быть не может. Значит 3 – 2 = 1. И 1 добавляем к следующему разряду.
У нас вновь получается 1 + 1 = 2. Мы уже знаем, что 2 быть не может, значит записываем 0, а 1 добавляем к следующему разряду.
Складывать больше нечего, значит в ответе получаем: 10100.