Nosso objetivo aqui é caracterizar o que é Conservação do Momento Angular, este principio é semelhante a Conservação do Momento Linear. A Lei da Conservação do Momento Angular é uma lei fundamental da natureza, onde se torna válido desde escalas atômicas até ao movimento de galáxias, aonde não vale a mecânica de Newton (mecânica clássica).
Como sabemos, para que um corpo seja colocado em rotação, é necessário a ação de torque sobre o sistema. Na animação 1, um o homem puxa a corda , colocando a roda em movimento de rotação. Se o homem não interagisse com ela, a roda permaneceria em repouso (parada). No entanto, o torque produzido pelo homem na roda, atribui Momento angular na roda. Se não houvesse atrito nos rolamentos a roda tenderia a permanecer girando para sempre.
Animação 1: O torque produzido pelo homem, por um certo intervalo de tempo, dará origem ao Momento Angular. Se não houver, Torque externo que interrompa o movimento, a roda permanecerá girando para sempre. No entanto, nos mancais dos carros, o movimento é interrompido por causa do atrito.
Na animação seguinte ilustramos a situação anterior, sem a presença do atrito. Como a Força foi aplicado no sentido anti-horário na animação 1, para fazer a roda parar, é necessário aplicar torque no sentido horário. A animação 2 representa essa situação.
Animação 2: a roda é colocada em rotação quando a força é aplicada para a esquerda, produzindo torque e momento angular positivo. Para que a rotação cesse, é necessário aplicação de força para a direita, produzindo torque e momento angular negativo. A força aplicada para a direita cancela o que foi produzido pela força para a esquerda.
Mas há algumas situações em que ocorre fenômenos interessantes, como é o caso por exemplo de uma pessoa que esta sob uma plataforma giratória (equipamento de atrito desprezível) segurando dois halteres. Após a pessoa ser colocada em movimento de rotação, pela ação de torque, está adquiri quantidade de Momento Angular, e permanece girando constantemente. Se por ventura a pessoa enquanto estiver rodando encolher os braços sua velocidade angular aumenta, no entanto seu momento angular continua o mesmo, ele se conserva. Vejamos a animação 3.
Ao estender os braços a pessoa aumenta seu momento de inércia, e a velocidade angular diminui, isto ocorre porque o Momento Angular tende a se conservar. Na medida em que a pessoa encolhe os braços sua velocidade angular aumenta, porém seu momento de inercia diminui. A Conservação do Momento Angular decorre diretamente da seguinte equação:
T = ∆L/∆t
Isto significa que, quando,
T = 0
Então,
∆L/∆t = 0
Portanto,
" Quando o torque externo resultante que atua sobre o um sistema é igual a zero, o momento angular do sistema permanece constante (se conserva)"