Add your tips for effective work with GPUs:
Verify that
you are a member of dsi-gpu-users, and read their threads
Show GPU usage on your machine
source /cortex/code/scripts/gpustat.py
Run a command directly on a dsigpu
ssh dsihead ssh dsigpu01 ls
To make your life easier, add the following to your .bashrc:
alias dgx01="ssh -A -t dsihead.lnx.biu.ac.il ssh -A -t dgx01"
alias dgx02="ssh -A -t dsihead.lnx.biu.ac.il ssh -A -t dgx02"
alias dgx03="ssh -A -t dsihead.lnx.biu.ac.il ssh -A -t dgx03"
Snapshot of GPU usage (repeatedly SSHs into machines)
source /cortex/code/scripts/scan_gpu.sh
Run on a specific Server/GPU
source /cortex/code/scripts/run_gpu.sh 43 ls
Does the following:
ssh into dsigpu04,
export the CUDA visible GPU to 3
run ls
How to profile GPU utilization:
Instructions here
Legacy instructions for local compgpu1 (2016)
For the local lab GPU (updated 2016)
GPU computer IP address: 132.71.84.233
GPU computer hostname: gpucomp1
Checking GPU usage (from the command line): nvidia-smi
To setup the GPU (and CAFFE) libraries paths, add the following to your ~/.bashrc file:
GPU1=gpucomp1
host=$(hostname)
if [[ $host == $GPU1 ]]
then
# Setting GPU envs
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda-7.5/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda-7.5
export CUDA=/usr/local/cuda-7.5
export PATH="$PATH:/usr/local/cuda-7.5/bin"
# CAFFE
export PYTHONPATH=/local_stuff/caffe/python:$PYTHONPATH
fi