(with T. Yamada), Mathematical analysis of a partial differential equation system on the thickness, arXiv:2409.19958.
(with S. Makida), Stability of metric viscosity solutions under Hausdorff convergence, arXiv:2310.07420.
Two approaches to minimax formula of the additive eigenvalue for quasiconvex Hamiltonians, Proc. Amer. Math. Soc. 147, no. 2, 701-710, Feb. 2019, arXiv:1412.6735, doi:10.1090/proc/14280.
(with Q. Liu), Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces, Discrete Contin. Dyn. Syst. 39, no. 1, 157-183, Jan. 2019, arXiv:1710.00504, doi:10.3934/dcds.2019007.
(with T. Namba), Stability properties and large time behavior of viscosity solutions of Hamilton-Jacobi equations on metric spaces, Nonlinearity 31, no. 11, 5147-5161, Oct. 2018, arXiv:1602.00530, doi:10.1088/1361-6544/aadc02.
(with P. Rybka), Integrability of the derivative of solutions to a singular one-dimensional parabolic problem, Topol. Methods Nonlinear Anal. 52, no. 1, 239-257, Sep. 2018, arXiv:1705.08469, doi:10.12775/TMNA.2018.031.
(with P. Rybka), Energy solutions to one-dimensional singular parabolic problems with BV data are viscosity solutions, Mathematics for Nonlinear Phenomena - Analysis and Computation, 195-213, Nov. 2017, arXiv:1603.07502, doi:10.1007/978-3-319-66764-5_9.
(with N. Hamamuki and T. Namba), On cell problems for Hamilton-Jacobi equations with non-coercive Hamiltonians and their application to homogenization problems, J. Differential Equations 259, no. 11, 6672-6693, Dec. 2015, arXiv:1409.5514, doi:10.1016/j.jde.2015.08.003.
(with Y. Giga and N. Hamamuki), Eikonal equations in metric spaces, Trans. Amer. Math. Soc. 367, no. 1, 49-66, 2015, doi:10.1090/S0002-9947-2014-05893-5.
Metric viscosity solutions for Hamilton-Jacobi equations of evolution type, Adv. Math. Sci. Appl. 24, no. 2, 333-351, 2014, arXiv:1407.7634, https://mcm-www.jwu.ac.jp/~aikit/AMSA/current.html.
(with M.-H. Giga and Y. Giga), On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force, Geometric Partial Differential Equations proceedings, 145-170, 2013, doi:10.1007/978-88-7642-473-1_8.
中安淳、森田陽介、京都大学ガロア祭/問題と解説、数学セミナー 60、12号、56-61、2021年11月。
蕭冬遠、張龍傑、中安淳、若林泰央、協同組合の数理解析、数理科学実践研究レター、LMSR 2018-8、2018年7月、http://www.ms.u-tokyo.ac.jp/lmsr/pdf/2018-8.pdf。