Calcolo Numerico / Numerical Analysis (Ingegneria dell'Energia, Canale B)
A.A. 2023-2024
Sugli esami degli anni precedenti del Canale A e Canale B
Studente di Ingegneria dell'Energia
Qualora lo studente di Ingegneria dell'Energia iscritto nell'A.A. 2023-2024 al Canale A o al Canale B abbia ottenuto voto sufficiente solo in una delle prove (Teoria o Laboratorio), manterra' il voto ottenuto per l'A.A. 2024-2025. Per poter registrare l'esame dovra' ottenere un voto positivo nella prova mancante.
Il voto finale dato dalla combinazione dei singoli voti, sara' ottenuto secondo il regolamento del corso per l'A.A. 2024-2025 (e non secondo quello degli anni precedenti).
Studente di Ingegneria Meccanica
Lo studente di Ingegneria Meccanica, che
per l'A.A. 2023-2024 (o precedenti) ha mutuato il corso di Calcolo Numerico dal Canale B di Ingegneria dell'Energia,
ha ottenuto voto sufficiente in solo una delle prove (Teoria o Laboratorio),
per superare l'esame di Calcolo Numerico dovra' ottenere valutazione finale positiva nell'omologo corso del canale di sua competenza nell'A.A. 2024-2025 (e non presso il futuro canale unico di Ingegneria dell'Energia), secondo il regolamento stabilito dal nuovo docente.
Per quanto riguarda i dettagli sulla gestione dei voti e del programma, si prega quindi di non scrivere al docente del canale B di Ingegneria dell'Energia che non e' a conoscenza di questi ultimi.
Si suggerisce invece di partecipare alle lezioni di Calcolo Numerico del nuovo anno accademico nel Canale di Ingegneria Meccanica di cui fa parte, specialmente a quella introduttiva, ricevendo tali informazioni dal nuovo docente di riferimento.
Teoria
Statistiche:
Ingegneria dell'Energia: iscritti: 12, sufficienti: -, insuff.: -, ritirati: -, assenti: -.
Ingegneria Meccanica: iscritti: 6, sufficienti: -, insuff.: -, ritirati: -, assenti: -.
Laboratorio
Statistiche:
Ingegneria dell'Energia: iscritti: 12, sufficienti: 7, insuff.: 2, ritirati: -, assenti: 3.
Ingegneria Meccanica: iscritti: 4, sufficienti: 0, insuff.: 3, ritirati: -, assenti: 1.
Calendario settimanale previsto
Lezioni Settimana 1
Lezione 1 di teoria
Argomenti:
» Introduzione al corso (1h).
» Rappresentazione dei numeri reali.
» Un esempio.
» Numeri macchina.
PDF utili:
Lezione 2 di teoria
Argomenti:
» Alcune proprieta' numeri macchina (minimo, massimo). Accenno.
» Alcune proprieta' numeri macchina (cardinalita', spaziatura).
» Precisione singola e doppia.
» Troncamento e arrotondamento (esempi).
PDF utili:
Lezioni Settimana 2
Lezione 3 di teoria:
» Precisione di macchina.
» Errori relativi e assoluti (per numeri e vettori), con esempi.
» Errori relativi e assoluti per troncamento/arrotondamento (parte I).
» Errori relativi e assoluti per troncamento/arrotondamento (parte II).
» Unita' di arrotondamento.
» Operazioni con i numeri macchina.
» Proprieta' commutativa, associativa e distributiva delle operazioni floating point (con esempi).
PDF utili:
Lezione 4 di teoria:
» Errori nelle operazioni e loro propagazione.
» Il caso della somma, con dimostrazione.
» Esempio sulla cancellazione.
» Il caso del prodotto, con dimostrazione.
» Alcune problematiche numeriche.
» Valutazione di una funzione (condizionamento di una funzione).
PDF utili:
Lezione 1 di Laboratorio
» Matlab e Octave.
» Interfaccia grafica di Matlab.
» Command Window.
» Variabili.
» Valori che possono assumere le variabili (scalari, vettori, matrici, stringhe).
» Operazioni e funzioni elementari predefinite (con esempi).
» Alcune costanti.
» Help di Matlab.
» Assegnazioni.
» Il comando "whos".
» Vettori riga e colonna in Matlab.
» Comandi "length" e "size", "zeros", "ones".
» Vettori equispaziati come "a:h:b" o con "linspace".
PDF utili:
Lezioni Settimana 3
Lezione 5 di teoria:
» Alcuni esempi del condizionamento.
» Stabilita' di un algoritmo.
» Calcolo di una radice di secondo grado.
» Approssimazione di pi greco.
» Una successione ricorrente.
» Sulla somma ((1+x)-1)/x.
» Sulla valutazione di f(x)=x come tan(arctan(x)).
» Valutazione di polinomi: complessita' computazionale.
PDF utili:
Lezione 6 di teoria
» Potenza di un numero (con esempio).
» Determinanti: confronto della regola di Laplace e metodo con fattorizzazione LU (cenno).
» Soluzione numerica di equazioni nonlineari esempi, grafici e metodi iterativi.
» Ordine di convergenza.
PDF utili:
Lezione 2 di Laboratorio
» Accesso alle componenti di un vettore.
» Operazioni elementari di tipo vettoriale.
» Funzioni elementari e loro applicazione a vettori.
» Note sulle operazioni moltiplicative.
» Somma tra scalari e vettori.
» Operazioni moltiplicative tra scalari e vettori.
» Definizione di funzioni matematiche.
» La grafica di Matlab e il comando plot.
PDF utili:
Lezioni Settimana 4
Lezione 7 di teoria
» Ordine di convergenza, con esempio.
» Metodo di bisezione (algoritmo).
» Convergenza del metodo di bisezione (con dimostrazione, prima parte).
PDF utili:
Lezione 8 di teoria
» Convergenza del metodo di bisezione (con dimostrazione, seconda parte).
» Test di arresto per il metodo di bisezione (con esempi).
» Metodo di Newton.
» Interpretazione grafica del metodo di Newton.
» Test di arresto per il metodo di Newton.
PDF utili:
Lezione 3 di Laboratorio
» La scala semilogaritmica
» Altri comandi per grafici
» I comandi legend e title
» Le stringhe di testo
» I comandi format, disp, fprintf
» Le matrici: definizione.
» Operazioni elementari con Matrici.
PDF utili:
Lezioni Settimana 5
Lezione 9 di teoria
» Un teorema di convergenza locale per il metodo di Newton (asserto e dimostrazione).
» Un teorema di convergenza globale per il metodo di Newton (asserto e dimostrazione parte I).
PDF utili:
Lezione 10 di teoria
» Un teorema di convergenza globale per il metodo di Newton (dimostrazione parte II).
» Newton e zeri multipli.
» Newton: alcuni esempi (casi semplici e multipli).
» Newton: radici quadrate.
» Metodo delle secanti.
» Metodo delle secanti: un teorema di convergenza.
» Metodo delle secanti: alcuni esempi.
PDF utili:
Lezione 4 di Laboratorio
» Le matrici: gestione di matrici particolari con [A; B] e [A B].
» Definizione di una funzione
» Definizione di una funzione: le directories
» Definizione di una funzione: variabili locali
» Definizione di una funzione: piu variabili in input e output
» Operatori di relazione e condizionali (con esempi)
» Le istruzioni condizionali: if then else (con esempi)
» Le istruzioni condizionali: switch (con esempi)
» Ciclo For (con esempi)
PDF utili:
Lezioni Settimana 6
Lezione 11 di teoria
» Metodi di punto fisso: introduzione.
» Interpretazione geometrica del problema e delle iterazioni di punto fisso.
» Esempio.
» Teorema di punto fisso di Banach (asserto).
» Un teorema di punto fisso di convergenza locale (asserto).
» Un teorema di punto fisso di convergenza locale (ordine p, asserto).
» Metodo di Newton come metodo di punto fisso.
» Metodo di Newton e teorema di punto fisso di convergenza locale (asserto).
» Calcolo di radice di 5 mediante 4 successioni di punto fisso.
PDF utili:
Lezione 5 di Laboratorio
» Ciclo While (con esempi)
» Relazioni tra ciclo for e ciclo while (con esempi)
» Gestione dei files dei dati. Salvare dati su file.
» Altri comandi.
PDF utili:
Introduzione a Matlab.
Esercizi Matlab
Per gli studenti che vogliono cominciare a provare le loro competenze in Matlab, si suggerisce di svolgere i seguenti esercizi.
Esercizi Matlab: [PDF, esercizi (testo)]
Esercizi Matlab Correzione: [PDF, esercizi (testo e correzione)]
» Streaming delle correzioni degli esercizi.
Argomento 1. Esercizio 1. [12:07] ↓
Argomento 1. Esercizio 2. [20:23] ↓
Argomento 1. Esercizio 3. [09:10] ↓
Argomento 1. Esercizio 4. [03:12] ↓
Argomento 1. Esercizio 5. [09:26] ↓
Argomento 1. Esercizio 6. [04:10] ↓
Argomento 1. Esercizio 7. [14:46] ↓
Argomento 1. Esercizio 8. [04:02] ↓
Argomento 1. Esercizio 9. [05:21] ↓
Quiz Matlab
Per gli studenti che vogliono cominciare a provare le loro competenze in Matlab, si suggerisce di svolgere i seguenti quiz.
» Quiz 1: testo (facoltativo)
» Quiz 1: soluzione
» Quiz 2: testo (facoltativo)
» Quiz 2: soluzione
Lezioni Settimana 7
Lezione 12 di teoria
» Interpolazione: introduzione.
» Unicita' del polinomio interpolatore (con dimostrazione via algebra lineare, breve cenno).
» Polinomi di Lagrange.
» Polinomio interpolatore mediante polinomi di Lagrange.
» Esistenza del polinomio interpolatore.
» Esistenza e unicita' del polinomio interpolatore (con dimostrazione via algebra lineare)
» Errore di interpolazione (senza dimostrazione)
PDF utili:
Lezione 13 di teoria
» Esempio di stima dell'errore di interpolazione.
» Convergenza dell'interpolazione polinomiale: nodi equispaziati e di tipo Chebyshev;
» Convergenza uniforme: una stima uniforme dell'errore tra funzione e polinomio interpolatore;
» Teorema di Faber e di Bernstein;
» Controesempio di Runge: comportamento dell'interpolante in nodi equispaziati e di Chebyshev;
PDF utili:
Lezione 6 di Laboratorio
» Metodo di bisezione in Matlab (con demo).
» Metodo di Newton in Matlab (con cicli while).
» Metodo di Newton in Matlab (con cicli for, esercizio).
PDF utili:
» Equazioni nonlineari: laboratorio (Presentazione),
» Equazioni nonlineari: laboratorio (pdf),
» Esercizi (testo e correzione).
Files Matlab:
» bisezione.m
» demo_bisezione.m
» demo_newton.m
» demo_newton_for.m
» newtonfun.m
» newtonfun_for.m
» punto_fisso.m (facoltativo)
» demo_punto_fisso.m (facoltativo) Esercizi Matlab
Per gli studenti che vogliono cominciare a provare le loro competenze in Matlab, si suggerisce di svolgere i seguenti esercizi.
» Esercizi Matlab: [PDF, esercizi (testo)]
» Esercizi Matlab Correzione: [PDF, esercizi (testo e correzione)]
» Streaming delle correzioni degli esercizi.
Argomento 1. Esercizio 1. [12:07] ↓
Argomento 1. Esercizio 2. [20:23] ↓
Argomento 1. Esercizio 3. [09:10] ↓
Argomento 1. Esercizio 4. [03:12] ↓
Argomento 1. Esercizio 5. [09:26] ↓
Argomento 1. Esercizio 6. [04:10] ↓
Argomento 1. Esercizio 7. [14:46] ↓
Argomento 1. Esercizio 8. [04:02] ↓
Argomento 1. Esercizio 9. [05:21] ↓
Quiz Matlab
Per gli studenti che vogliono cominciare a provare le loro competenze in Matlab, si suggerisce di svolgere i seguenti quiz.
» Quiz 1: testo (facoltativo)
» Quiz 1: soluzione
» Quiz 2: testo (facoltativo)
» Quiz 2: soluzione
» Quiz 3: testo (facoltativo)
» Quiz 3: soluzione
» Quiz 4: testo (facoltativo)
» Quiz 4: soluzione
Lezioni Settimana 8
Lezione 14 di teoria
» Un problema dell'interpolazione polinomiale.
» Funzioni polinomiali a tratti. Funzioni polinomiali a tratti, interpolanti e di grado "s".
» Esistenza e unicita' delle funzioni polinomiali a tratti, interpolanti e di grado "s" su dati che sono multiplo di "s".
» Errore dell'interpolante polinomiale a tratti di grado 1 (asserto e dimostrazione).
» Convergenza uniforme delle funzioni polinomiali a tratti, interpolanti e di grado "1".
PDF utili:
Lezione 15 di teoria
» Splines.
» Differenza tra splines e interpolanti polinomiali a tratti.
» Splines cubiche interpolanti.
» Analisi dell'unicita' delle splines cubiche.
» Splines naturali, vincolate e periodiche.
» Splines not-a-knot.
» Convergenza delle splines cubiche.
PDF utili:
Lezione 7 di Laboratorio
» Interpolazione in Matlab: polyfit e polyval.
» La funzione di Runge in Matlab (esempio, con demo).
» Esercizi.
PDF utili:
» Interpolazione polinomiale (presentazione),
» Interpolazione polinomiale (PDF),
» Interpolazione polinomiale in Matlab per Ingegneria dell'Energia Esercizi risolti (PDF),
» Interpolazione polinomiale in Matlab per Ingegneria dell'Energia Esercizi risolti. (Matlab files).
Files Matlab (lezione):
» esperimento.m
» gcl.m
» interpol.m
» runge.m
Files Matlab (esercizi):
» demo_runge1
» demo_runge2
» test_runge.m
» errori_interpolazione.txt
Quiz Matlab
» Quiz 5: testo (facoltativo)
» Quiz 5: soluzione
» Quiz 6: testo (facoltativo)
» Quiz 6: soluzione
Lezioni Settimana 9
Lezione 16 di teoria
» Osservazione sulla convergenza uniforme per splines cubiche.
» Esperimento di Runge con splines cubiche.
» Problema ai minimi quadrati: definizione e motivazioni.
PDF utili:
Lezione 17 di teoria
» Curve fitting.
» Regressione lineare (con esempio).
» Alcuni esempi di approssimazione polinomiale di funzioni (con verifica convergenza uniforme).
» Minimi quadrati e ricostruzione di funzione da dati perturbati.
» Integrazione numerica: stabilita' e convergenza uniforme (accenno).
PDF utili:
Lezioni Settimana 10
Lezione 8 di Laboratorio
» Splines in Matlab: interp1 e spline.
» Alcuni esempi.
» Esercizi.
Video (A.A. 2019-2020):
» Argomento 5. Parte 1. (spline lineari ↦ esercizi relativi) [42:45] (l'autrice del video e' la Dott.ssa Giulia Sarego) ↓
Files Matlab (lezione):
» demo_spline_lineare.m
» demo_spline_cubica.m
» demo_spline_cubica_naturale.m (facoltativo)
» errore_spline_lineare.m (correzione esercizio 1)
» demo_runge_spline_lineare.m (correzione esercizio 2)
» errore_spline_cubica.m (correzione esercizio 3)
» demo_runge_spline_cubica.m (correzione esercizio 4)
» errore_spline_cubica_naturale.m (facoltativo)
» demo_runge_spline_cubica_naturale.m (facoltativo)
PDF utili:
» Splines in Matlab (laboratorio),
» Interpolazione spline in Matlab per Ingegneria dell'Energia Esercizi risolti..
Quiz Matlab
» Quiz 7: testo (facoltativo)
» Quiz 7: soluzione
» Quiz 8: testo (facoltativo)
» Quiz 8: soluzione
Lezioni Settimana 11
Lezione 18 di teoria
» Formule interpolatorie.
» Grado di precisione.
» Grado di precisione delle formule interpolatorie.
» Regole del rettangolo: definizione ed errore.
» Regola midpoint: definizione ed errore.
» Formule di Newton-Cotes chiuse.
» Regola del trapezio ed errore.
» Regola di Cavalieri-Simpson ed errore.
» Alcuni esempi di convergenza.
PDF utili:
Tutoraggio 1
» Martedi' 7 maggio, ore 16.30 (Tutor: Alvise Sommariva),
» tutoraggio 1 (testo),
» tutoraggio 1 (Matlab).
» Correzione (video). ↓
Nota:
le esercitazioni di tutoraggio non sono obbligatorie, ma comunque utili per chi sia alle prime armi con la programmazione;
verra' chiesto di risolvere un esercizio (prima ora di tutoraggio);
di seguito verra' esposta la soluzione dell'esercizio e gli studenti potranno fare domande specifiche;
la esercitazione si svolge online, via Zoom (meeting ID: 931 567 0682).
Lezione 19 di teoria
» Formule composte e interpolanti a tratti.
» Formula composta midpoint, errore, grado di precisione, esempio.
» Formula composta trapezi, errore, grado di precisione, esempio.
» Formula composta Cavalieri-Simpson, errore, grado di precisione, esempio.
PDF utili:
Lezione 9 di Laboratorio
» Minimi quadrati polinomiali in Matlab.
» Il comando polyfit per il calcolo della soluzione ai minimi quadrati.
» Un esempio con la regressione.
» Un esempio con l'approssimazione ai minimi quadrati (grado variabile).
» Esercizio.
Video (A.A. 2019-2020):
» Argomento 6. Parte 1. (approssimazione ai minimi quadrati ↦ regressione lineare) [42:45] (l'autrice del video e' la Dott.ssa Giulia Sarego) ✔ ↓
PDF utili:
» [Beamer: lezione in aula],
» [PDF: lezione in aula],
» [PDF, esercizi (testo e correzione)]
Files Matlab
» demo_regressione_lineare.m
» demo_minimiquadrati.m
» file_dati.m
» esercizio_regressione_lineare.m
Quiz Matlab
» Quiz 9: testo (facoltativo)
» Quiz 9: soluzione
» Quiz 10: testo (facoltativo)
» Quiz 10: soluzione
Lezioni Settimana 12
Lezione 20 di teoria
» Formule composte: esempi.
» Norma di vettori (definizione)
» Norme "p" e infinito.
» Esempi.
» Norme indotte di matrici (definizione).
» Raggio spettrale.
» Norme indotte di matrici (esempi p=1, p=2, p=inf).
» Sistemi perturbati Ax=b, Ax=b+db e numero di condizionamento (solo asserti, con esempio).
» Sistemi perturbati Ax=b, (A+dA)x=b e numero di condizionamento (solo asserti, con esempio).
PDF utili:
Tutoraggio
» Lunedi' 13 maggio, ore 14.30 (Tutor: E. Bano),
» tutoraggio 2 (testo),
» tutoraggio 2 (Matlab).
» tutoraggio 2 (video).
Nota:
le esercitazioni di tutoraggio non sono obbligatorie, ma comunque utili per chi sia alle prime armi con la programmazione;
verra' chiesto di risolvere un esercizio (prima ora di tutoraggio);
di seguito verra' esposta la soluzione dell'esercizio e gli studenti potranno fare domande specifiche;
la esercitazione si svolge online, via Zoom (meeting ID comunicato nel sito Moodle).
Lezione 21 di teoria
» Risoluzione numerica di sistemi Ax=b con A matrice triangolare.
» Risoluzione numerica di sistemi Ax=b con A matrice triangolare: complessita' computazionale.
» Risoluzione di sistemi lineari con eliminazione gaussiana (esempio matriciale).
» Matrici cui a priori e' applicabile l'eliminazione gaussiana: a predominanza diagonale, simmetriche definite positive.
» Fattorizzazione LU.
» Complessita' computazionale A=LU (senza dimostrazione).
» Risoluzione di sistemi lineari con eliminazione gaussiana e loro legame con la fattorizzazione LU.
» Problematiche della fattorizzazione LU e della risoluzione dei sistemi lineari.
» Esempio di risoluzione di sistemi lineari con eliminazione gaussiana con pivoting (parte I).
PDF utili:
Lezione 10 di Laboratorio
» Regola dei trapezi e di Cavalieri-Simpson;
» Una demo di esempio sulla regola dei trapezi e di Cavalieri-Simpson;
» Formula dei trapezi composta;
» Formula dei trapezi composta: implementazione in Matlab;
» Formula dei Cavalieri-Simpson composta;
» Formula dei Cavalieri-Simpson composta: implementazione in Matlab;
» Una demo di esempio sulla formula composta dei trapezi e di Cavalieri-Simpson;
» Esercizio assegnato.
PDF utili:
Quiz Matlab
» Quiz 9: testo (facoltativo)
» Quiz 9: soluzione
» Quiz 10: testo (facoltativo)
» Quiz 10: soluzione
Lezioni Settimana 13
Lezione 22 di teoria
» Esempio di risoluzione di sistemi lineari con eliminazione gaussiana con pivoting (parte II).
» Risoluzione di sistemi lineari con eliminazione gaussiana con pivoting.
» Matrici di permutazione.
» Fattorizzazione PA=LU.
» Risoluzione del sistema Ax=b, nota PA=LU.
» Metodi iterativi e metodi diretti: breve introduzione.
» Metodi iterativi stazionari: x^(k+1)=Bx^(k)+c.
PDF utili:
Lezioni di tutoraggio
» Lunedi' 20 maggio, ore 14.30 (Tutor: E. Bano),
» tutoraggio 3 (testo),
» tutoraggio 3 (Matlab)
» Correzione (video). ↓
Lezione 23 di teoria
» Metodi iterativi stazionari: legame tra metodo e soluzione di un problema di punto fisso.
» Metodi iterativi stazionari: un teorema di convergenza globale legato al raggio spettrale di B (senza dimostrazione).
» Metodo di Jacobi (esempio matrice 3 x 3).
» Metodo di Gauss-Seidel (esempio matrice 3 x 3).
» Metodi di Jacobi e Gauss-Seidel (caso generale).
» Splitting A=D-E-F.
» Splitting A=P-N.
» Splitting A=P-N: caso Jacobi.
» Splitting A=P-N: caso Gauss-Seidel.
» Convergenza di Jacobi/Gauss Seidel per matrici a pred. diag. stretta (senza dimostrazione).
» Convergenza di Gauss Seidel per matrici simmetriche definite positive (senza dimostrazione).
» Metodi iterativi e loro convergenza: esempi.
PDF utili:
Lezione 11 di Laboratorio
» Fattorizzazione LU ed eliminazione gaussiana in Matlab.
» Il comando mldivide (backslash);
» Soluzione di sistemi lineari con backslash;
» Fattorizzazione LU;
» Fattorizzazione LU (esempi);
» Soluzione di sistemi lineari nota la fattorizzazione LU;
» Esercizi.
Video (A.A. 2019-2020):
» Argomento 8. Parte 2 (update: 19 maggio 2022)
Files Matlab (lezione):
» metodo_LU.m
» test_metodo_LU.m
» test_metodo_LU2.m
» test_metodo_LU3.m
» demo_eliminazione_gaussiana.m (esercizio risolto)
» fattorizzazione_LU.m (esercizio risolto).
PDF utili:
Quiz Matlab
» Quiz 11: testo (autore: C. Arcamone)
» Quiz 11: soluzione
» Quiz 12: testo (autore: F. Lunardon)
» Quiz 12: soluzione
Lezioni Settimana 14
Lezioni di tutoraggio
» Lunedi' 27 maggio, ore 14.30 (Tutor: E. Bano),
Esercizio 4. (esempio fisica, autore: C. Arcamone)
» Testo.
» Matlab.
» Correzione (video). ✔ ↓
Nota:
le esercitazioni di tutoraggio non sono obbligatorie, ma comunque utili per chi sia alle prime armi con la programmazione;
verra' chiesto di risolvere un esercizio (prima ora di tutoraggio);
di seguito verra' esposta la soluzione dell'esercizio e gli studenti potranno fare domande specifiche;
la esercitazione si svolge online, via Zoom (meeting ID comunicato nel sito Moodle).
la esercitazione si svolge anche in presenza in 2BC30 (Torre Archimede)
Lezione di Laboratorio 12
» Giovedi' 30 maggio 2023, ore 14.30
» Preparazione ai compiti di laboratorio.
PDF utili:
Lezioni Settimana 15
Lezioni di tutoraggio
» Lunedi' 3 giugno, ore 14.30 (Tutor: E. Bano),
Esercizio 5. (mappa logistica, autore: F. Tedeschi)
» Testo.
» Matlab.
» Correzione (video) ↓
Nota:
le esercitazioni di tutoraggio non sono obbligatorie, ma comunque utili per chi sia alle prime armi con la programmazione;
verra' chiesto di risolvere un esercizio (prima ora di tutoraggio);
di seguito verra' esposta la soluzione dell'esercizio e gli studenti potranno fare domande specifiche;
la esercitazione si svolge online, via Zoom (meeting ID comunicato nel sito Moodle).
la esercitazione si svolge anche in presenza in 1AD100 (Torre Archimede)
Lezione 24 di teoria
» Mercoledi' 5 giugno 2023, ore 10.30
» Preparazione ai compiti di teoria.
Lezioni Settimana 16
Lezioni di tutoraggio
» Lunedi' 10 giugno, ore 14.30 (Tutor: M. Barbieri),
Esercizio 6. (regula falsi, autore: C. Arcamone)
» Testo.
» Matlab.
» Correzione (video) ↓
Quiz Matlab
» Quiz 13: testo (autore: C. Arcamone)
» Quiz 13: soluzione
» Quiz 14: testo (autore: C. Arcamone)
» Quiz 14: soluzione
Programma completo del corso
Programma di teoria
Numeri macchina:
» Rappresentazione dei numeri reali.
» Un esempio.
» Numeri macchina.
» Alcune proprieta' numeri macchina (minimo, massimo).
» Alcune proprieta' numeri macchina (cardinalita', spaziatura).
» Precisione singola e doppia;
» Troncamento e arrotondamento (con esempi e osservazioni);
» Precisione di macchina;
» Errori relativi e assoluti (per numeri e vettori), con esempi;
» Unita' di arrotondamento.
» Operazioni con i numeri macchina;
» Proprietà commutativa, associativa e distributiva delle operazioni floating point (con esempi);
» Errori nelle operazioni e loro propagazione;
» Il caso della somma, con dimostrazione;
» Esempio sulla cancellazione;
» Il caso del prodotto, con dimostrazione;
» Alcune problematiche numeriche;
» Valutazione di una funzione (condizionamento di una funzione);
» Alcuni esempi del condizionamento.
» Stabilita' di un algoritmo.
» Calcolo di una radice di secondo grado.
» Approssimazione di pi greco.
» Una successione ricorrente.
» Sulla somma ((1+x)-1)/x.
» Sulla valutazione di f(x)=x come tan(arctan(x)).
» Valutazione di polinomi: complessita' computazionale.
» Potenza di un numero.
» Determinanti: confronto della regola di Laplace e metodo con fattorizzazione LU.
Soluzione di equazioni non lineari:
» Soluzione numerica di equazioni nonlineari esempi, grafici e metodi iterativi.
» Ordine di convergenza, con esempio.
» Metodo di bisezione.
» Convergenza del metodo di bisezione.
» Test di arresto per il metodo di bisezione (con esempi).
» Metodo di Newton.
» Interpretazione grafica del metodo di Newton.
» Test di arresto per il metodo di Newton.
» Un teorema di convergenza locale per il metodo di Newton (traccia della dimostrazione).
» Un teorema di convergenza globale per il metodo di Newton (con dimostrazione).
» Newton e zeri multipli.
» Newton: alcuni esempi (casi semplici e multipli).
» Newton: radici quadrate ed n-sime.
» Metodo delle secanti.
» Metodo delle secanti: un teorema di convergenza.
» Metodo delle secanti: un esempio.
» Metodi di punto fisso: introduzione.
» Teorema di punto fisso di Banach (senza dimostrazione).
» Un teorema di punto fisso di convergenza locale (senza dimostrazione).
» Un teorema di punto fisso di convergenza locale (ordine p, senza dimostrazione).
» Metodo di Newton come metodo di punto fisso.
» Metodo di Newton e teorema di punto fisso di convergenza locale (traccia della dimostrazione).
Interpolazione polinomiale:
» Interpolazione: introduzione.
» Esistenza e unicita' del polinomio interpolatore (con dimostrazione)
» Errore di interpolazione (senza dimostrazione)
» Esempio di stima dell'errore di interpolazione.
» Convergenza dell'interpolazione polinomiale: nodi equispaziati e di tipo Chebyshev;
» Convergenza uniforme: una stima uniforme dell'errore tra funzione e polinomio interpolatore;
» Teorema di Faber e di Bernstein;
» Controesempio di Runge: comportamento dell'interpolante in nodi equispaziati e di Chebyshev;
» Stabilita' dell'interpolazione polinomiale: stime, costante di Lebesgue;
» Costante di Lebesgue per nodi equispaziati e di Chebyshev.
Funzioni polinomiali a tratti e splines:
» Un problema dell'interpolazione polinomiale.
» Funzioni polinomiali a tratti. Funzioni polinomiali a tratti, interpolanti e di grado "s".
» Esistenza e unicita' delle funzioni polinomiali a tratti, interpolanti e di grado "s" su dati che sono multiplo di "s".
» Errore dell'interpolante polinomiale a tratti di grado 1.
» Convergenza uniforme delle funzioni polinomiali a tratti, interpolanti e di grado "1".
» Splines.
» Differenza tra splines e interpolanti polinomiali a tratti.
» Splines cubiche interpolanti.
» Analisi dell'unicita' delle splines cubiche.
» Splines naturali, vincolate e periodiche.
» Splines not-a-knot.
» Convergenza delle splines cubiche.
» Osservazione sulla convergenza uniforme.
» Esperimento di Runge.
Minimi quadrati:
» Problema ai minimi quadrati: definizione e motivazioni.
» Teorema che lega il numero di campionamenti all'errore dei minimi quadrati.
» Alcuni esempi.
» Curve fitting.
» Regressione lineare (con esempio).
» Minimi quadrati e ricostruzione di funzione da dati perturbati.
Derivazione numerica: (argomento non svolto!)
» Derivazione e un risultato negativo di convergenza uniforme.
» Analisi del rapporto incrementale (con dimostrazione).
» Instabilita' del rapporto incrementale (con dimostrazione).
» Esempi.
» Analisi del metodo alle differenze simmetriche (con dimostrazione).
» Instabilita' del rapporto incrementale (con dimostrazione).
» Esempi.
Integrazione numerica:
» Integrazione numerica: stabilita' e convergenza uniforme (con dimostrazione).
» Formule interpolatorie.
» Grado di precisione.
» Grado di precisione delle formule interpolatorie.
» Regole del rettangolo: definizione ed errore.
» Regola midpoint: definizione ed errore.
» Formule di Newton-Cotes chiuse.
» Regola del trapezio ed errore.
» Regola di Cavalieri-Simpson ed errore.
» Formule composte e splines.
» Formula composta midpoint, errore, grado di precisione, esempio.
» Formula composta trapezi, errore, grado di precisione, esempio.
» Formula composta Cavalieri-Simpson, errore, grado di precisione, esempio.
Algebra Lineare Numerica:
» Norma di vettori (definizione)
» Norme "p" e infinito.
» Esempi.
» Norme indotte di matrici (definizione).
» Raggio spettrale.
» Norme indotte di matrici (esempi p=1, p=2, p=inf).
» Sistemi perturbati Ax=b e numero di condizionamento (solo asserto, con esempio).
» Risoluzione numerica di sistemi Ax=b con A matrice triangolare.
» Risoluzione numerica di sistemi Ax=b con A matrice triangolare: complessita' computazionale.
» Risoluzione di sistemi lineari con eliminazione gaussiana (esempio matriciale).
» Matrici cui a priori e' applicabile l'eliminazione gaussiana: a predominanza diagonale, simmetriche definite positive.
» Fattorizzazione LU.
» Complessita' computazionale A=LU (senza dimostrazione).
» Risoluzione di sistemi lineari con eliminazione gaussiana e loro legame con la fattorizzazione LU.
» Problematiche della fattorizzazione LU e della risoluzione dei sistemi lineari.
» Esempio di risoluzione di sistemi lineari con eliminazione gaussiana con pivoting.
» Risoluzione di sistemi lineari con eliminazione gaussiana con pivoting.
» Matrici di permutazione.
» Fattorizzazione PA=LU.
» Risoluzione del sistema Ax=b, nota PA=LU.
» Tempi di calcolo.
» Fattorizzazione Cholesky e sua complessita'.
» Risoluzione del sistema Ax=b, nota la Fattorizzazione Cholesky
» Metodi iterativi e metodi diretti: breve introduzione.
» Metodi iterativi stazionari: x^(k+1)=Bx^(k)+c.
» Metodi iterativi stazionari: legame tra metodo e soluzione di un problema di punto fisso.
» Metodi iterativi stazionari: un teorema di convergenza globale legato al raggio spettrale di B (senza dimostrazione).
» Metodo di Jacobi (esempio matrice 3 x 3).
» Metodo di Gauss-Seidel (esempio matrice 3 x 3).
» Metodi di Jacobi e Gauss-Seidel (caso generale).
» Splitting A=D-E-F.
» Splitting A=P-N.
» Splitting A=P-N: caso Jacobi.
» Splitting A=P-N: caso Gauss-Seidel.
» Convergenza di Jacobi/Gauss Seidel per matrici a pred. diag. stretta (senza dimostrazione).
» Convergenza di Gauss Seidel per matrici simmetriche definite positive (senza dimostrazione).
» Metodi iterativi e loro convergenza: esempio.
Sistema-floating point e propagazione degli errori
Argomenti.
errore di troncamento e di arrotondamento,
rappresentazione floating-point dei reali,
precisione di macchina,
operazioni aritmetiche con numeri approssimati,
condizionamento di funzioni,
propagazione degli errori in algoritmi iterativi per esempi,
il concetto di stabilita',
complessita' computazionale.
Dispense.
Teoria:
Ultima versione: Giovedi' 12 marzo 2020.
Laboratorio:
Introduzione a Matlab
Esperimenti teoria degli errori:
Lezioni multimediali A.A. 2019-2020.
Teoria:
» Argomento 1. Parte 1 (Presentazione del corso di Calcolo Numerico) [43:14] ✔ ↓
» Argomento 1. Parte 2 (Rappresentazione dei numeri reali ↦ Alcune proprieta' numeri macchina (cardinalita', spaziatura)) [45:18] ✔ ↓
» Argomento 1. Parte 3 (Precisione singola e doppia ↦ Unita' di arrotondamento) [33:32] ✔ ↓
» Argomento 1. Parte 4 (Operazioni con i numeri macchina ↦ Errore nel prodotto, con dimostrazione) [17:23] ✔ ↓
» Argomento 1. Parte 5 (Alcune problematiche numeriche ↦ Alcuni esempi del condizionamento) [10:10] ✔ ↓
» Argomento 1. Parte 6 (Stabilita' di un algoritmo ↦ Una successione ricorrente) [27:32] ✔ ↓
» Argomento 1. Parte 7 (Sulla somma ((1+x)-1)/x ↦ Potenza di un numero) [21:20] ✔ ↓
» Argomento 1. Parte 8 (Valutazione dell'esponenziale ↦ Determinante di una matrice) [10:04] (corretto link: ore 10.48 del 16/03/20) ✔ ↓
Laboratorio:
Lezioni
» Installazione Matlab (Nota sull'installazione di Matlab presso l'Universita' di Padova) [4:28] (corretto link: ore 10.48 del 16/03/20) ✔ ↓
» Installazione Matlab (Nota ulteriore sull'installazione di Matlab presso l'Universita' di Padova) [1.39] ✔ ↓
» Argomento 1. Parte 1 (Introduzione a Matlab ↦ Comando whos) [41:29] (corretto link: ore 10.48 del 16/03/20) ✔ ↓
» Argomento 1. Parte 2 (Vettori in Matlab ↦ Accesso alla componente di un vettore) [24:21] ✔ ↓
» Argomento 1. Parte 3 (Vettori ↦ Operazioni vettoriali) [8.46] ✔ ↓
» Argomento 1. Parte 4 (Operazioni vettoriali) [19.05] ✔ ↓
» Argomento 1. Parte 5 (Operazioni vettoriali ↦ Grafica in Matlab) [20:43] ✔ ↓
» Argomento 1. Parte 6 (Scala semilogaritmica ↦ fprintf) [39:32] ✔ ↓
» Argomento 1. Parte 7 (Matrici: definizione ↦ gestione di matrici particolari con [A; B] e [A B].) [26:29] ✔ ↓
» Argomento 1. Parte 8 (Definizione di una funzione ↦ Definizione di una funzione: piu variabili in input e output) [12:20] ✔ ↓
» Argomento 1. Parte 9. (Operatori di relazione e condizionali (con esempi) ↦ Altri comandi) [64:21] (il file e' la sostituzione di un precendemente che si interrompeva prima della fine) ✔ ↓
» Argomento 2. Parte 1. (Radici di Secondo grado in Matlab: metodo stabile e instabile ↦ Calcolo di pi greco mediante successioni) [18:09] ↓
» Argomento 2. Parte 2. (Evitare un'amplificazione indesiderata degli errori ↦ complessità computazionale) [49:27] (l'autrice del video e' la Dott.ssa Giulia Sarego) ↓
Correzione esercizi per casa
» Argomento 1. Esercizio 1. [12:07] ↓
» Argomento 1. Esercizio 2. [20:23] ↓
» Argomento 1. Esercizio 3. [09:10] ↓
» Argomento 1. Esercizio 4. [03:12] ↓
» Argomento 1. Esercizio 5. [09:26] ↓
» Argomento 1. Esercizio 6. [04:10] ↓
» Argomento 1. Esercizio 7. [14:46] ↓
» Argomento 1. Esercizio 8. [04:02] ↓
» Argomento 1. Esercizio 9. [05:21] ↓
Soluzione numerica di equazioni non lineari
Argomenti.
metodo di bisezione,
stima dell'errore col residuo pesato;
metodo di Newton,
velocita' di convergenza,
convergenza locale,
stima dell'errore,
altri metodi di linearizzazione;
iterazioni di punto fisso.
Dispense.
Teoria:
Laboratorio:
Lezioni multimediali A.A. 2019-2020.
Teoria:
» Argomento 2. Parte 1 (Equazioni nonlineari ↦ Convergenza bisezione (asserto)) [35:34] ✔ ↓
» Argomento 2. Parte 2 (Convergenza Bisezione ↦ Alcuni test di arresto.) [35:21] ✔ ↓
» Argomento 2. Parte 3 (Metodo di Newton ↦ Teorema di Convergenza locale (asserto)) [16:08] ✔ ↓
» Argomento 2. Parte 4 (Convergenza Newton Locale (dimostrazione) ↦ Alcuni esempi) [49:58] ✔ ↓
» Argomento 2. Parte 5 (Newton (esempi) ↦ Metodo delle Secanti (esempi)) [16:29] ✔ ↓
» Argomento 2. Parte 6 (Punto fisso ↦ Punto fisso (esempi)) [44:28] ✔ ↓
Laboratorio:
» Argomento 3. (il metodo di bisezione ↦ il metodo di punto fisso) [44:11] (l'autrice del video e' la Dott.ssa Giulia Sarego) ↓ (102Mb)
Interpolazione e approssimazione di funzioni e dati
Argomenti.
Interpolazione polinomiale:
interpolazione di Lagrange,
errore di interpolazione,
il problema della convergenza (controesempio di Runge),
interpolazione di Chebyshev,
stabilita' dell'interpolazione.
Interpolazione polinomiale a tratti, interpolazione spline,
funzioni polinomiali a tratti; funzioni polinomiali a tratti, interpolanti e di grado "s"; esistenza e unicita' sotto opportune condizioni;
errore dell'interpolante polinomiale a tratti di grado 1,
convergenza uniforme delle funzioni polinomiali a tratti, interpolanti e di grado "1",
splines, lineari, cubiche, interpolanti,
unicita' delle splines cubiche,
convergenza delle splines cubiche,
Approssimazione polinomiale ai minimi quadrati.
problema ai minimi quadrati: definizione e motivazioni,
legame tra campionamenti ed errore dei minimi quadrati,
curve fitting, regressione lineare (con esempio),
minimi quadrati e ricostruzione di funzione da dati perturbati.
Dispense.
Teoria:
Interpolazione polinomiale
Interpolazione polinomiale a tratti, interpolazione spline.
Approssimazione polinomiale ai minimi quadrati.
Laboratorio:
Interpolazione polinomiale
Ultima versione: 17 gennaio 2019.
Interpolazione polinomiale a tratti, interpolazione spline.
Ultima versione: 15 maggio 2020.
Approssimazione polinomiale ai minimi quadrati.
Ultima versione: 03 gennaio 2019.
Lezioni multimediali A.A. 2019-2020.
Teoria:
Interpolazione polinomiale
» Argomento 3. Parte 1 (Interpolazione: introduzione ↦ Esempio di stima dell'errore di interpolazione) [47:28] ↓
» Argomento 3. Parte 2 (Convergenza dell'interpolazione polinomiale: nodi equispaziati e di tipo Chebyshev ↦ Costante di Lebesgue per nodi equispaziati e di Chebyshev) [44:12] ↓
Interpolazione polinomiale a tratti, interpolazione spline
» Argomento 4. Parte 1 (Un problema dell'interpolazione polinomiale ↦ Convergenza uniforme delle funzioni polinomiali a tratti, interpolanti e di grado "1") [44:12] ↓
» Argomento 4. Parte 2 (Splines ↦ Esperimento di Runge e splines cubiche) [49:13] ↓
Approssimazione polinomiale ai minimi quadrati
» Argomento 5. Parte 1 (Problema ai minimi quadrati: definizione e motivazioni ↦ Minimi quadrati e ricostruzione di funzione da dati perturbati) [47:50] ↓
Laboratorio:
Interpolazione polinomiale
» Argomento 4. Parte 1. (l'interpolazione polinomiale in Matlab tramite le funzioni "polyfit" e "polyval" ↦ esercizi relativi all'interpolazione al variare del grado del polinomio) [41:14] (l'autrice del video e' la Dott.ssa Giulia Sarego) ↓
Interpolazione polinomiale a tratti, interpolazione spline
» Argomento 5. Parte 1. (spline lineari ↦ esercizi relativi) [42:45] (l'autrice del video e' la Dott.ssa Giulia Sarego) ↓
Approssimazione polinomiale ai minimi quadrati
» Argomento 6. Parte 1. (approssimazione ai minimi quadrati ↦ regressione lineare) [42:45] (l'autrice del video e' la Dott.ssa Giulia Sarego) ↓
Integrazione e derivazione numerica:
Argomenti.
Integrazione numerica
» Formule di quadratura algebriche e composte, convergenza e stabilita', esempi.
Derivazione numerica
» Instabilita' dell'operazione di derivazione, calcolo di derivate tramite formule alle differenze.
Estrapolazione numerica
» Il concetto di estrapolazione e sue applicazioni al calcolo di integrali e derivate.
Dispense.
Teoria:
Integrazione numerica
Derivazione numerica
Estrapolazione numerica
Laboratorio:
Integrazione numerica
Lezioni multimediali A.A. 2019-2020.
Teoria:
Integrazione numerica
» Argomento 7. Parte 1 (Integrazione numerica: stabilita' e convergenza uniforme (con dimostrazione) ↦ Regola di Cavalieri-Simpson, errore, grado di precisione) [49:55] ↓
» Argomento 7. Parte 2 (Formule composte e interpolanti a tratti ↦ Stabilita' formule di quadratura (con dimostrazione).) [59:18] ↓
Derivazione numerica
» Argomento 6. Parte 1 (Derivazione e un risultato negativo di convergenza uniforme ↦ Esempi) [58:16] ↓
Estrapolazione numerica
» Argomento 8. Parte 1 (Il concetto di estrapolazione ↦ Esempi) [45:36] ↓
Laboratorio:
Integrazione numerica
» Argomento 6. Parte 1. (formula regola dei trapezi ↦ formule composte) [51:36] (l'autrice del video e' la Dott.ssa Giulia Sarego) ↓ (1.37GB)
Elementi di algebra lineare numerica
Argomenti.
Norme di vettori e matrici,
condizionamento di matrici e sistemi;
metodi diretti: metodo di eliminazione gaussiana e fattorizzazione LU,
calcolo della matrice inversa,
metodi iterativi: i metodi di Jacobi e Gauss-Seidel,
struttura generale delle iterazioni stazionarie.
fattorizzazione QR,
soluzione ai minimi quadrati di sistemi sovradeterminati;
Dispense.
Teoria:
Laboratorio:
(Dispense 2020-2021)
(Dispense 2019-2020)
Lezioni multimediali A.A. 2019-2020.
Teoria:
» Argomento 9. Parte 1 (Norma di vettori ↦ Sistemi perturbato Ax=b e numero di condizionamento (caso generale, solo asserto)) [67:39] ↓
» Argomento 9. Parte 2 (Risoluzione di sistemi lineari (esempio matriciale) ↦ Fattorizzazione PA=LU) [65:38] ↓
» Argomento 9. Parte 3 (Matrici cui a priori non serve pivoting: a predominanza diagonale, simmetriche definite positive ↦ Inversa: cofattori vs LU) [43:53] ↓
» Argomento 9. Parte 4 (Metodi iterativi e metodi diretti: breve introduzione. ↦ Metodo di Gauss-Seidel (esempio matrice 3 x 3).) [46:17] ↓
» Argomento 9. Parte 5 (Convergenza di Jacobi per matrici a pred. diag. stretta (senza dimostrazione) ↦ Test di arresto.) [20:28] ↓
» Argomento 9. Parte 6 (Sistemi sovradeterminati e soluzione ai minimi quadrati: definizione ↦ Legame tra soluzione dell'approssimazione ai minimi quadrati ed equazioni normali (senza dimostrazione)) [19:04] ↓
» Argomento 9. Parte 7 (Matrici rettangolari e fattorizzazione Cholesky. ↦ Risoluzione equazioni normali con fattorizzazione SVD: un esempio.) [43:01] ↓
Laboratorio:
» Argomento 8. Parte 1. (Condizionamento ↦ Esempi) [43:15] (l'autrice del video e' la Dott.ssa Giulia Sarego) ↓ (1.19GB)
» Argomento 8. Parte 2. (Fattorizzazione LU ↦ Metodo di Gauss-Seidel) [54:51] (l'autrice del video e' la Dott.ssa Giulia Sarego) ↓ (1.41GB)
Quiz
» Quiz 1: testo (autore: A. Sommariva)
» Quiz 2: testo (autore: G. Comunale)
» Quiz 3: testo (autore: C. Arcamone)
» Quiz 4: testo (autore: F. Tedeschi)
» Quiz 5: testo (autore: F. Lunardon)
» Quiz 6: testo (autore: C. Arcamone)
» Quiz 7: testo (autore: G. Comunale)
» Quiz 8: testo (autore: C. Arcamone)
» Quiz 9: testo (autore: C. Arcamone)
» Quiz 10: testo (autore: C. Arcamone)
» Quiz 11: testo (autore: C. Arcamone)
» Quiz 12: testo (autore: F. Lunardon)
» Quiz 13: testo (autore: C. Arcamone)
» Quiz 14: testo (autore: C. Arcamone)
Esercizio 1. (sequenza numerica, autore: A. Sommariva)
» Testo.
» Correzione (Matlab).
» Correzione (video). ↓
Esercizio 2. (esponenziale e formula di Taylor, autore: A. Sommariva)
» Testo.
» Correzione (Matlab).
» Correzione (video). ↓
Esercizio 3. (calcola ordine, autore: A. Sommariva)
» Testo.
» Matlab.
» Correzione (video). ↓
Esercizio 4. (esempio fisica, autore: C. Arcamone)
» Testo.
» Matlab.
» Correzione (video). ✔ ↓
Esercizio 5. (mappa logistica, autore: F. Tedeschi)
» Testo.
» Matlab.
» Correzione (video) ↓
Esercizio 6. (regula falsi, autore: C. Arcamone)
» Testo.
» Matlab.
» Correzione (video) ↓
Esercizio 7. (interpolazione inversa, autore: A. Sommariva)
» Testo.
» MATLAB.
» Correzione (video) ↓
Esercizio 8. (polinomi di Lagrange, autore: F. Tedeschi)
» Testo.
» Testo.
» MATLAB.
» Correzione (video) ↓
Esercizio 9. (covid e minimi quadrati, autore: A. Sommariva)
» Testo.
» covid.dat (file necessario per l'esercizio!).
» MATLAB.
» Correzione (video) [14:23] ✔ ↓
Esercizio 10. (numeri primi, autore: F. Lunardon)
» Testo.
» Testo.
» MATLAB.
» Correzione (video) [08:02] ✔ ↓
2018-2019:
Esercitazione 8: (formula Cavalieri-Simpson composta)
» Testo,
» Matlab.
Esercizio precompito (da provare a casa): (metodo di Jacobi)
» Testo,
» Matlab .
Esercizio precompito.: (metodo di Newton-Fourier)
» Testo.
Videolezioni per anno accademico
Per il corso si suggeriscono i testi
K.E. Atkinson: Elementary Numerical Analysis (in inglese).
G. Rodriguez: Algoritmi Numerici.
A. Martinez, Calcolo Numerico con Matlab. Temi d'esame di laboratorio. Testi e soluzioni. Edizioni Libreria Progetto, 2017.
S. De Marchi-M. Poggiali, Exercises of Numerical Calculus with solutions in Matlab/Octave, Edizioni La Dotta, 2018. (in inglese)
Per alcune tracce di calcolo numerico, si considerino
Altre sorgenti didattiche:
MATLAB Onramp (in inglese, tutorial interattivo della durata di circa tre ore)
Getting Started with MATLAB, Mathworks (in inglese)
Numerical Computing with MATLAB, by Cleve Moler (in inglese)
Matlab Tutorial, di Kelly Black (in inglese)
Introduction to Matlab Programming (video), MIT. (in inglese)
Octave Quick Reference (in inglese)
Teaching Numerical Analysis using Elementary Numerical Analysis, di K. Atkinson e W. Han (in inglese)
Manuale di Matlab. (slides di Angeles Martinez Calomardo)
Syllabus: dimostrazioni irrinunciabili.
Syllabus degli argomenti in cui le dimostrazioni sono irrinunciabili (e` necessario saper sviluppare una discussione su tutti gli argomenti del programma; qui si elencano i risultati di cui bisogna conoscere una dimostrazione completa e rigorosa, che ci si aspetta venga svolta in una prova scritta pertinente)
Precisione di macchina come massimo errore relativo di troncamento nel sistema floating-point;
analisi di stabilita' di moltiplicazione, addizione e sottrazione con numeri approssimati;
convergenza del metodo di bisezione
teorema di convergenza locale per il metodo di Newton (traccia della dimostrazione);
teorema di convergenza globale per il metodo di Newton (con dimostrazione).
esistenza e unicita' dell'interpolazione polinomiale;
convergenza uniforme dell'interpolazione lineare a tratti.
Principali informazioni sull'insegnamento
Obbligo di frequenza, Lingua di erogazione, Corso singolo, Corso a libera scelta, Corso per studenti Erasmus.
Obbligo di frequenza: No
Lingua di erogazione: italiano
Corso singolo: non e' possibile iscriversi all'insegnamento come corso singolo
Corso a libera scelta: e' possibile utilizzare l'insegnamento come corso a libera scelta
Corso per studenti Erasmus: gli studenti Erasmus+ o di altri programmi di mobilita' non possono frequentare l'insegnamento
Dove e quando si svolge il corso
Le lezioni cominceranno il giorno lunedi' 26/02/2024, 8:30-10:30, P1 - COMPLESSO PAOLOTTI.
In generale l'orario delle lezioni seguira' il seguente schema:
Teoria:
» lunedi' dalle 8.30 alle 10.30, P1, Complesso Paolotti.
» mercoledi' dalle 10.30 alle 12.30, P1, Complesso Paolotti.
Laboratorio:
» giovedi', Aula Taliercio (presso Padiglione 14, Fiera), dalle 14.30 alle 16.30.
Collaboratori del corso, conoscenze richieste, dove e quando si svolge il corso, Moodle, numero di telefono, indirizzo, email del docente, orario di ricevimento, presentazione del corso, registro (ultimo anno accademico svolto).
Collaboratori del corso
E. Bano (tutor, 24h)
M. Barbieri (didattica di supporto, 24h)
G. Elefante (didattica frontale, 16h)
Conoscenze richieste
Prerequisiti: Conoscenze di base di analisi matematica.
Conoscenze e abilita' da acquisire: Apprendere le basi del calcolo numerico in vista delle applicazioni in campo scientifico e tecnologico, con particolare attenzione ai concetti di errore, discretizzazione, approssimazione, convergenza, stabilita', costo computazionale.
Moodle
La pagina Moodle del corso e'
https://stem.elearning.unipd.it/enrol/index.php?id=8608
La pagina e' abilitata all'iscrizione spontanea come pure autoenrol, sia per gli studenti di Ingegneria dell'Energia (canale B), che di Ingegneria Meccanica.
In generale non si richiede l'uso di password (attenzione al pulsante di iscrizione scelto!).
Numero di telefono, indirizzo, email del docente
Numero di telefono: 049-8271350
Indirizzo: Torre Archimede, stanza 426, Via Trieste 63, 35121 Padova
e-mail: alvise at math.unipd.it, (sostituire "at" con "@")
Orario di ricevimento
Gli orari di ricevimento sono stabiliti settimanalmente (via Zoom). Per il loro orario si veda il calendario settimanale delle lezioni.
Presentazione del corso
Nei files che seguono viene introdotto il corso (formato presentazione tipo beamer e PDF).
Registro (A.A. 2023-2024)
Registro del corso. [PDF]
2023-2024
Appello I
Teoria (21-06-24)
Statistiche:
Ingegneria dell'Energia: iscritti: 37, sufficienti: 19, insuff.: 11, ritirati: 2, assenti: 3, orale: 2.
Ingegneria Meccanica: iscritti: 14, sufficienti: 4, insuff.: 8, ritirati: 0, assenti: 2.
Laboratorio (21-06-24)
Statistiche:
Ingegneria dell'Energia: iscritti: 31, sufficienti: 28, insuff:: 1, ritirati: -, assenti: 2.
Ingegneria Meccanica: iscritti: 7, sufficienti: 5, insuff.: -, ritirati: -, assenti: 2.
Appello II
Teoria (08-07-24)
Testo: [PDF],
Quiz: [PDF]
Statistiche:
Ingegneria dell'Energia: iscritti: 40, sufficienti: 18, insuff.: 12, ritirati: 2, assenti: 2, 17: 6.
Ingegneria Meccanica: iscritti: 18, sufficienti: 6, insuff.: 10, ritirati: 1, assenti: 0, 17: 1.
Laboratorio (05-07-24)
Statistiche:
Ingegneria dell'Energia: iscritti: 18, sufficienti: 10, insuff.: 6, ritirati: -, assenti: 2.
Ingegneria Meccanica: iscritti: 5, sufficienti: 2, insuff.: 3, ritirati: -, assenti: -.
Appello III
Teoria (26/08/24)
Statistiche:
Ingegneria dell'Energia: iscritti: 24, sufficienti: 8, orale: 2, insuff.: 7, ritirati: 4, assenti: 3.
Ingegneria Meccanica: iscritti: 15, sufficienti: 3, orale: 2, insuff.: 6, ritirati: 3, assenti: 1.
Laboratorio (28/08/24)
Statistiche:
Ingegneria dell'Energia: iscritti: 22, sufficienti: 11, insuff.: 7, ritirati: -, assenti: 4.
Ingegneria Meccanica: iscritti: 15, sufficienti: 5, insuff.: 7, ritirati: -, assenti: 3.
Appello IV
Teoria
Statistiche:
Ingegneria dell'Energia: iscritti: 12, sufficienti: 9, insuff.: 2, ritirati: 0, assenti: 1.
Ingegneria Meccanica: iscritti: 6, sufficienti: 5, insuff.: -, ritirati: -, assenti: 1.
Laboratorio
Statistiche:
Ingegneria dell'Energia: iscritti: 12, sufficienti: 7, insuff.: 2, ritirati: -, assenti: 3.
Ingegneria Meccanica: iscritti: 4, sufficienti: 0, insuff.: 3, ritirati: -, assenti: 1.
2022-2023
Appello I
Laboratorio (23-06-23)
Quiz: [Testo, PDF], [Soluzione, PDF],
Statistiche:
Ingegneria dell'Energia: iscritti: 41, sufficienti: 24, insuff.: 13, ritirati: 1, assenti: 3.
Ingegneria Meccanica: iscritti: 15, sufficienti: 8, insuff.: 6, ritirati: 0, assenti: 1.
Teoria (26-06-23)
Testo: [Testo, PDF]
Quiz: [Testo, PDF], [Soluzione, PDF],
Ingegneria dell'Energia: iscritti 38, assenti 3, insuff. 13, ritirati 2, suff 14, orale 6.
Ingegneria Meccanica: iscritti 18, assenti 3, insuff. 4, ritirati 3, suff 6, orale 2.
Appello II
Laboratorio (10-07-23)
Quiz: [Testo, PDF]: soluzione B, D, C, A.
Statistiche:
Ingegneria dell'Energia: iscritti: 29, sufficienti: 20, insuff.: 7, ritirati: 0, assenti: 2.
Ingegneria Meccanica: iscritti: 16, sufficienti: 9, insuff.: 2, ritirati: 1, assenti: 4.
Teoria (12-07-23)
Testo: [Testo, PDF]
Quiz: [Testo, PDF]: soluzione B, B, B.
Ingegneria dell'Energia: iscritti 43, assenti 3, insuff. 11, ritirati 3, suff 22, orale 4.
Ingegneria Meccanica: iscritti 14, assenti 0, insuff. 3, ritirati 2, suff 9.
Appello III
»: Teoria
Testo: [Testo, PDF]
Quiz: [Testo, PDF]: soluzione C, A, B.
Ingegneria dell'Energia: iscritti 31, assenti 4 insuff. 16, ritirati 2, suff 8, orale 1.
Ingegneria Meccanica: iscritti 13, assenti 3, insuff. 2, ritirati 3, suff 4, orale 2.
Laboratorio
Quiz: [Testo, PDF]: soluzione: D,B,A,A.
Ingegneria dell'Energia: iscritti 23, assenti 2, insuff. 2, ritirati 1, suff 18, orale -.
Ingegneria Meccanica: iscritti 11, assenti 1, insuff. 3, ritirati -, suff 7, orale -.
Appello IV
Laboratorio (24-01-24)
Quiz: [Testo, PDF]: soluzione: A,A,B,A.
Ingegneria dell'Energia: iscritti 10, assenti 1, insuff. -, ritirati -, suff 9, orale -.
Ingegneria Meccanica: iscritti 4, assenti 2, insuff. -, ritirati -, suff 2, orale -.
Teoria (26-01-24)
Quiz: [Testo, PDF] Soluzione: D, D, D.
Ingegneria dell'Energia: iscritti 19, assenti 0, insuff. 9, ritirati 1, suff 8, orale 1.
Ingegneria Meccanica: iscritti 9, assenti -, insuff. 3, ritirati 3, suff 2, orale 1.
2021-2022
Appello IV
Laboratorio (30-01-23)
Statistiche:
Ingegneria dell'Energia: iscritti: 14, sufficienti: 8, insuff.: 5, ritirati: 0, assenti: 1.
Ingegneria Meccanica: iscritti: 9, sufficienti: 5, insuff.: 4, ritirati: 0, assenti: 0.
Teoria (31-01-23)
Statistiche:
Ingegneria dell'Energia: iscritti: 17, sufficienti: 12, insuff.: 1, ritirati: 2, assenti: 2, esame orale: 0.
Ingegneria Meccanica: iscritti: 4, sufficienti: 0, insuff.: 4.
Appello III
Teoria (20-09-22)
Testo: [PDF]
Statistiche:
Ingegneria dell'Energia: iscritti: 34, sufficienti: 12, insuff.: 12, ritirati: 2, assenti: 5, esame orale: 3.
Ingegneria Meccanica: iscritti: 16, sufficienti: 4, insuff.: 7, ritirati: 3, assenti: 1, esame orale: 1.
Laboratorio (21-09-22)
Statistiche:
Ingegneria dell'Energia: iscritti: 25, sufficienti: 11, insuff.: 11, ritirati: 2, assenti: 1, esame orale: 0.
Ingegneria Meccanica: iscritti: 13, sufficienti: 2, insuff.: 9, ritirati: 2, assenti: 2, esame orale: 0.
Appello II
Teoria (31-06-22)
Testo: [PDF]
Statistiche:
Ingegneria dell'Energia: iscritti: 37, sufficienti: 13, insuff.: 11, ritirati: 5, assenti: 2, esame orale: 6.
Ingegneria Meccanica: iscritti: 12, sufficienti: 4, insuff.: 2, ritirati: 4, assenti: 1, esame orale: 1.
Laboratorio (01-07-22)
Statistiche:
Ingegneria dell'Energia: iscritti: 23, sufficienti: 12, insuff.: 6, ritirati: 2, assenti: 3, esame orale: -.
Ingegneria Meccanica: iscritti: 5, sufficienti: 2, insuff.: 2, ritirati: -, assenti: 1, esame orale: -.
Appello I
Teoria (15-06-22)
» Ingegneria dell'Energia: iscritti: 19, sufficienti: 8+1, insuff.: 5, ritirati: 2, assenti: 2, esame orale: 2 (1).
» Ingegneria Meccanica: iscritti: 8, sufficienti: 3, insuff.: 4, ritirati: 0, assenti: 1, esame orale: 0.
Laboratorio (16-06-22)
» Ingegneria dell'Energia: iscritti: 19, sufficienti: 13, insuff.: 4, ritirati: 0, assenti: 2, esame orale: 0.
» Ingegneria Meccanica: iscritti: 6, sufficienti: 5, insuff.: 0, ritirati: 0, assenti: 1, esame orale: 0.
2020-2021
Appello I
Teoria (15-06-21)
» Ingegneria dell'Energia: 38 iscritti: assenti 4, ritirati: 3, insuff. 22, suff: 9.
» Ingegneria Meccanica: 10 iscritti: assenti 1, ritirati: 0, insuff. 2, suff: 7.
Laboratorio (18-06-21)
Ingegneria dell'Energia: 35 iscritti: assenti 3, ritirati: 0, insuff. 7, suff: 25.
Ingegneria Meccanica: 7 iscritti: assenti 0, ritirati: 0, insuff. 1, suff: 6.
Appello II
Teoria (01-07-21)
Ingegneria dell'Energia: 52 iscritti: assenti 4, ritirati: 0, insuff. 8, suff: 33, 16 o 17: 7.
Ingegneria Meccanica: 8 iscritti: assenti 1, ritirati: 0, insuff. 1, suff: 5, 16 o 17: 1.
Laboratorio (02-07-21)
Ingegneria dell'Energia: iscritti: 23, assenti 4, ritirati: -, insuff. 9, suff: 10.
Ingegneria Meccanica: iscritti: 10, assenti 1, ritirati: 0, insuff. 2, suff: 7.
Appello III
Teoria (16-09-21)
Ingegneria dell'Energia: - iscritti: 21, assenti , ritirati: 2, insuff. 7, suff: 11, 16 o 17: 1.
Ingegneria Meccanica: - iscritti: 10, assenti 2, ritirati: 0, insuff. 2, suff: 3, 16 o 17: 3.
Laboratorio (17-09-21)
Ingegneria dell'Energia: iscritti: 40, assenti 7, ritirati: 0, insuff. 4, suff: 29.
Ingegneria Meccanica: iscritti: 10, assenti 2, ritirati: 1, insuff. 4, suff: 3.
Appello IV
Teoria (21-01-22)
Ingegneria dell'Energia: - iscritti: 13, assenti 1, ritirati: 0, insuff. 4, suff: 4, 16 o 17: 4.
Ingegneria Meccanica: - iscritti: 6, assenti 0, ritirati: -, insuff. 1, suff: 5, 16 o 17: 0.
Laboratorio (24-01-22)
Ingegneria dell'Energia: - iscritti: 11, assenti 2, ritirati: 0, insuff. 0, suff: 9, 16 o 17: 0.
Ingegneria Meccanica: - iscritti: 5, assenti 1, ritirati: -, insuff. 1, suff: 3, 16 o 17: 0.
2019-2020
Appello I
Teoria (15-06-20)
Ingegneria dell'Energia: 51 iscritti: assenti 3, ritirati: 3, insuff. 11, 17: 7, suff: 27.
Ingegneria Meccanica: 13 iscritti: assenti 2, ritirati: 0, insuff. , 17: 1, suff: 4.
Laboratorio (16-06-20)
Ingegneria dell'Energia: 41 iscritti: assenti 4, ritirati: 0, insuff. 2, 17: 0, suff: 35.
Ingegneria Meccanica: 5 iscritti: assenti 1, ritirati: 0, insuff. 2, 17: 0, suff: 2.
Registrazioni per il primo appello
Ingegneria dell'Energia: 18
Ingegneria Meccanica: 2
Appello II
Teoria (29-06-20)
Ingegneria dell'Energia: 45 iscritti: assenti 1, ritirati: 3, insuff. 11, 17: 2, suff: 28.
Ingegneria Meccanica: 12 iscritti: assenti 2, ritirati: 1, insuff. , 6: 1, suff: 3.
Laboratorio (30-06-20)
Ingegneria dell'Energia: 29 iscritti: assenti 3, ritirati: 3, insuff. 9, 17: 0, suff: 14.
Ingegneria Meccanica: 8 iscritti: assenti 2, ritirati: 1, insuff. , 1, suff: 4.
Registrazioni per il secondo appello
Ingegneria dell'Energia: 25
Ingegneria Meccanica: 4
Appello III
Teoria (14-09-20)
Ingegneria dell'Energia: 34 iscritti: assenti 4, ritirati: 1, insuff. 13, suff: 16.
Ingegneria Meccanica: 8 iscritti: assenti 0, ritirati: 2, insuff. : 5, suff: 1.
Laboratorio (16-09-20)
Ingegneria dell'Energia: 33 iscritti: assenti 7, ritirati: 0, insuff. 9, 17: 0, suff: 17.
Ingegneria Meccanica: 7 iscritti: assenti 0, ritirati: 1, insuff. , 3, suff: 3.
Registrazioni per il terzo appello
Ingegneria dell'Energia: 17
Ingegneria Meccanica: 2
Appello IV
Teoria (29-01-21)
Ingegneria dell'Energia: 17 iscritti: assenti 1, ritirati: 1, insuff. 3, suff: 12.
Ingegneria Meccanica: 4 iscritti: assenti 1, ritirati: 1, insuff. , 0, suff: 2.
Laboratorio (26-01-21)
Ingegneria dell'Energia: 20 iscritti: assenti 1, ritirati: 0, insuff. 6, 17: 0, suff: 13.
Ingegneria Meccanica: 3 iscritti: assenti 0, ritirati: 0, insuff. , 1, suff: 2.
Registrazioni per il quarto appello
Ingegneria dell'Energia: 15
Ingegneria Meccanica: 2
2018-2019
Primo compitino (parte di Laboratorio), 10-05-19 (punti di Chebyshev estesi)
» Compito A: [PDF] [m]
» Compito B: [PDF] [m]
Secondo compitino (parte di Laboratorio), 07-06-19 (differenza centrale)
» Compito A: [PDF] [m]
» Compito B: [PDF] [m]
Primo Appello (parte di Laboratorio), 17-06-19
» Compito A: [PDF] [m]
» Compito B: [PDF] [m]
Primo Appello (parte di Teoria), 19-06-19
» Compito A: [PDF]
» Compito B: [PDF]
» Compito C: [PDF]
Secondo Appello (parte di Teoria), 09-07-19
» Compito A: [PDF]
» Compito B: [PDF]
» Compito C: [PDF]
Secondo Appello (parte di Laboratorio), 10-07-19 (punti di Chebyshev)
» Compito A: [PDF] [m]
» Compito B: [PDF] [m]
Terzo appello, (parte di Laboratorio), 16-09-19: (metodo di Jacobi)
» Compito A: [PDF] [m]
» Compito B: [PDF] [m]
Ing. Energia: suff/tot 19/37.
Ing. Meccanica: suff/tot 1/2.
Terzo Appello (parte di teoria), 18-09-19:
» Compito A: [PDF]
» Compito B: [PDF]
» Compito C: [PDF]
Ing. Energia: voto pari a 16: 7, voto pari a 17: 1, voto sufficiente: 19, voto insufficiente: 18, ritirati: 1, assenti: 8.
Ing. Meccanica: voto pari a 16: 1, voto pari a 0: 1, voto sufficiente: 0, voto insufficiente: 5, ritirati: 0, assenti: 2.
Quarto appello, (parte di Laboratorio), 24-01-20: (Newton modificato)
» Compito A: [PDF] [m]
» Compito B: [PDF] [m]
Ing. Energia: suff: 24, insuff: 1, ritirati: 1, assenti: 1,
Ing. Meccanica: suff: 2, insuff: 1, ritirati: 0, assenti: 1.
Quarto appello, (parte di teoria), 27-01-20:
» Compito A: [PDF]
» Compito B: [PDF]
» Compito C: [PDF]
Ing. Energia: suff: 10, 17:1, 16:1, < 16: 5, ritirati: 1, assenti: 2,
Ing. Meccanica: suff: 4, 17:,0 16:1, < 16: 0, ritirati: 2, assenti: 1..
Per il regolamento d'esame, si veda la pagina web
Commissione di esame, crediti d'esame, esami previsti.
Commissione d'esame
SOMMARIVA ALVISE (Presidente)
DE MARCHI STEFANO (Supplente)
VIANELLO MARCO (Supplente)
Crediti d'esame
L'esame e' da 9 crediti (totale: 72 ore di lezione di cui 24 di laboratorio).
Esami previsti
La seguente lista degli esami e' indicativa, e potrebbe essere modificata dal docente.
La lista completa degli appelli puo' essere reperita mediante Easystaff.
La modalita' e' attualmente in presenza ma puo' variare in virtu' di disposizioni dell'ateneo. .
Date delle prove:
Teoria (I): venerdì 21/06/2024, 09:30-13:00, P300 - AULE DI VIA LUZZATTI
Laboratorio (I): venerdì 21/06/2024, 15:30-18:30, LABP140 - COMPLESSO PAOLOTTI
Teoria (II): lunedì 08/07/2024, 15:00-18:30, P300 - AULE DI VIA LUZZATTI
Laboratorio (II): venerdì 05/07/2024, 15:30-18:30, LABP140 - COMPLESSO PAOLOTTI
Teoria (III): lunedì 26/08/2024, 15:00-18:30, P1 - COMPLESSO PAOLOTTI
Laboratorio (III): mercoledì 28/08/2024, 14:30-17:30, TALIERCIO - FIERA - PADIGLIONE 14 - FIERA DI PADOVA
Teoria (IV): lunedi' 10 febbraio 2025
Laboratorio (IV): lunedi' 10 febbraio 2025
Registrazioni per singolo appello.
2023-2024
20
16
20
-
totale:
2022-2023
14
30
20
16
totale: 80
2021-2022
12
14
17
12
totale: 55
2020-2021
13
27
29
12
totale: 81
2019-2020
17
25
15
15
totale: 72
Installazione Matlab e licenza Campus
Si ricorda che per gli studenti iscritti regolarmente è disponibile la licenza MATLAB Campus, che prevede il download gratuito del programma MATLAB consentendo ad ogni studente di installare Matlab sul proprio computer personale.
Per ulteriori informazioni, si consideri la pagina web: https://www.ict.unipd.it/servizi/servizi-utenti-istituzionali/contratti-software-e-licenze/matlab
Se servono video per avere un'idea di come fare l'installazione:
Installazione Matlab (Nota sull'installazione di Matlab presso l'Universita' di Padova) [4:28] ✔
Installazione Matlab (Nota ulteriore sull'installazione di Matlab presso l'Universita' di Padova) [1.39];
Se si e' interessati ad un software freeware estremamente compatibile con Matlab, si consideri: Octave
Valutazione della didattica
Generale:
Soddisfazione: media 8.24 mediana: 8
Aspetti organizzativi: media 8.41 mediana: 8.5
Azione didattica: media 8.49 mediana: 8.75
Ingegneria dell'Energia
Soddisfazione: media 8.22 mediana: 8
Aspetti organizzativi: media 8.58 mediana: 9
Azione didattica: media 8.46 mediana: 8.75
Ingegneria Meccanica
Soddisfazione: media 8.31 mediana: 9
Aspetti organizzativi: media 8.25 mediana: 8.5
Azione didattica: media 8.28 mediana: 8.5
Generale:
Soddisfazione: media 8.68 mediana: 9
Aspetti organizzativi: media 8.82 mediana: 9
Azione didattica: media 8.79 mediana: 9
Generale:
Soddisfazione: media 8.85
Aspetti organizzativi: media 9.2
Azione didattica: media 8.89
Organizzazione online: media 9.22
Ingegneria dell'energia:
Soddisfazione: media 8.82, mediana 9.00
Azione didattica: media 8.90, mediana 9.00
Organizzazione: media 9.24, mediana 9.33
Organizzazione online: media 9.31, mediana 9.25
Ingegneria meccanica:
Soddisfazione: media 8.93, mediana 9.00
Azione didattica: media 8.88, mediana 9.00
Organizzazione: media 9.10, mediana 9.29
Organizzazione online: media 8.91, mediana 9.25
Generale:
Soddisfazione: media 8.26, mediana 8.00
Azione didattica: media 8.20, mediana 8.00
Organizzazione online: media 8.75, mediana 8.75
Ingegneria dell'energia:
Soddisfazione: media 8.43, mediana 8.00
Azione didattica: media 8.39, mediana 8.25
Organizzazione online: media 8.88, mediana 9.00
Ingegneria meccanica:
Soddisfazione: media 7.81, mediana 8.00
Azione didattica: media 7.69, mediana 8.00
Organizzazione online: media 8.42, mediana 8.5
Ingegneria dell'energia:
Soddisfazione: media 7.94, mediana 8.00
Azione didattica: media 8.06, mediana 8.00
Organizzazione: media 7.94 mediana 8.00
Organizzazione online: media 8.31, mediana 8.5
Ingegneria meccanica:
Soddisfazione: media 7.30, mediana 7.50
Azione didattica: media 7.53, mediana 7.75
Organizzazione: media 7.83, mediana 8.00
Organizzazione online: media 7.85, mediana 8
Anno 2018-2019:
Soddisfazione: media 6.89, mediana 7.00
Azione didattica: media 7.16, mediana 7.50
Organizzazione: media 7.86, mediana 8.13
Soddisfazione: media 7, mediana 7.00
Azione didattica: media 6.94, mediana 7.50
Organizzazione: media 8.31, mediana 8.50