Papers with Ph.D. students
Papers with Dr. Diwaker
Multi-channel scattering problems: Analytically solvable model,
Diwaker & A. Chakraborty*, Mol. Phys., 110, 2257 (2012).
Curve crossing problems with gaussian type coupling: Analytically solvable model,
Diwaker* & A. Chakraborty, Mol. Phys., 110, 2197 (2012).
Transfer matrix approach to the curve crossing problem of two exponential diabatic potentials,
Diwaker* & A. Chakraborty, Mol. Phys., 113, 3406 (2015).
Exact solution to the curve crossing problems of two linear diabatic potentials by transfer matrix method,
Diwaker* & A. Chakraborty, Mol. Phys., 113, 3909 (2015).
Two-state problem with arbitrary coupling,
Diwaker* & A. Chakraborty, Chin. Phys. Lett., 32, 070301 (2015).
Effect of curve crossing induced dissociation on absorption and resonance Raman spectra: An analytically solvable model,
Diwaker* & A. Chakraborty, Spectrochimica Acta A, 151, 510 (2015).
Exact solution of time-dependent Schrodinger equation for two state problem in Laplace domain,
Diwaker & A. Chakraborty, Diwaker* & A. Chakraborty, Chem. Phys. Lett., 638, 133 (2015).
Long range electron transfer reactions in solution: An analytically solvable model,
Diwaker* & A. Chakraborty, Chem. Phys., 459, 19 (2015).
Exact solution of Schrodinger equation for two state problem with time dependent coupling,
Diwaker* & A. Chakraborty, Physica A, 442, 380 (2015).
Exact results on diffusion in a piecewise linear potential with a time dpendent sink.
Diwaker* & A. Chakraborty, J. Exp & Theo. Phys., 149, 439 (2016).
Papers with Ms. Moumita Ganguly
Understanding looping kinetics of a long polymer molecule in solution. Exact solution for delta function sink model.
M. Ganguly* & A. Chakraborty, Physica A, 484, 163 (2017).
Exploring the role of relaxation time, bond length and length of the polymer chain in the kinetics of end-to-end looping.
M. Ganguly* & A. Chakraborty, Chem. Phys. Lett., 733, 136673 (2019).
Understanding the reversible looping kinetics of a long chain polymer molecule in solution with Dirac Delta coupling.
M. Ganguly* & A. Chakraborty, Physica A, 536, 122509 (2019).
Looping of a long chain polymer in solution: Simple derivation for exact solution for a delta function sink.
M. Ganguly* & A. Chakraborty, Chem. Phys. Lett., 749, 137370 (2020).
The two-state reversible kinetics of a long polymer molecule in solution with a delocalized coupling term. An exact analytical model.
M. Ganguly* & A. Chakraborty, Phys. Scr., 95, 115006 (2020).
Opening of a weak link of a closed looped polymer immersed in solution. Analytical modelling using a delta function sink.
M. Ganguly* & A. Chakraborty, Phys. Scr., 95, 015003 (2021).
Analytical expression for end-to-end- auto correlation function of a long chain polymer molecule in solution.
M. Ganguly* & A. Chakraborty, Chem. Phys. Lett. (under revision) (2020).
Diffusion-reaction approach to polymer cyclization in solution: Exact time domain solution for Dirac delta function sink model,
M. Ganguly* and A. Chakraborty, Chem. Phys. (under review) (2020).
Self-organized criticality for the phenomenon of polymer looping in solution,
M. Ganguly* and A. Chakraborty, Mol. Phys. (under review) (2020).
Analytical expression for end-to-end-auto correlation function of a long chain polymer molecule in solution,
M. Ganguly* and A. Chakraborty, Chem. Phys. Lett. (2021).
Dynamics of semiflexible polymer end-to-end distribution and barrierless chemical reactions using fractional diffusion equation. An exact analytical model.
M. Ganguly* and A. Chakraborty, Phys. Scr. (under review) (2021).
A time-dependent Morphogen Gradient Analysis: An Exact Analytical Method.
M. Ganguly* and A. Chakraborty, Chem. Phy. Lett. (under review) (2021).
Effect of different architecture of sink function beyond Dirac delta sink model in looping kinetics of a long polymer molecule in solution
M. Ganguly* & A. Chakraborty (in preparation) (2020).
Papers with Mr. Saravanan Rajendran
Exact diffusion dynamics of a Gaussian distribution in a two state system.
R. Saravanan* & A. Chakraborty, Chem. Phys. Lett., 731, 136567 (2019).
Reaction-diffusion system: Fate of a Gaussian probability distribution on a flat potential with a sink.
R. Saravanan* & A. Chakraborty, Physica A, 536, 120989 (2019).
Some exact time-domain results related to reversible reaction-diffusion systems.
R. Saravanan* and A. Chakraborty, Chem. Phys., 539, 110955 (2020).
Diffusion dynamics in the presence of two competing sinks: Analytical solution for Oster-Nishijima's model.
R. Saravanan* & A. Chakraborty, Physica A, 563, 125317 (2021).
A general method to solve diffusion in piece-wise linear potentials in the time-domain,
R. Saravanan* & A. Chakraborty, Chem. Phys. (under revision) (2021).
Exact time-domain solution of the Schrodinger equation for a new scattering model
, R. Saravanan* & A. Chakraborty, Chem. Phys. Lett. (under revision) (2021).
Exact time-domain results for constantly coupled Smoluchowski equations of identical surfaces,
R. Saravanan* & A. Chakraborty, Chem. Phys. Lett. (under revision) (2020).
Quantum Physics of systems with ultrashort potentials: New Analytically solvable model.
D. Kumar, S. Rajendran* & A. Chakraborty, Physica E (under revision) (2021).
Exact solution for a reaction-diffusion system with an attractive harmonic well,
R. Saravanan* & A. Chakraborty, Chem. Phys. (under revision) (2021).
Exact quantum properties of a harmonic trap decorated by a delta-potential: transient insights into Bose-Einstein condensation,
R. Saravanan* & A. Chakraborty (to be submitted) (2021).Insights into Bose-Einstein condensates using a dimple |x|-potential decorated by a delta-potential,
R. Saravanan* & A. Chakraborty (to be submitted) (2021).
An analytically solvable reaction-diffusion model for chemical dynamics in solutions,
R. Saravanan*, A. Chakraborty (to be submitted) (2021).
Papers with Mr. Chinmoy Samanta
Transition time estimation for δ-function coupling in two state problem: An analytically solvable model,
M. Vashistha, C. Samanta* & A. Chakraborty, Chem. Phys. Lett., 770, 138436 (2021).
Reaction-diffusion dynamics in an attractive stepwise-linear potential energy curve under the Gaussian sink Action,
C. Samanta* & A. Chakraborty, Eur. Phys. J. Plus (under review) (2020).
Exact results for the Schrödinger equation with moving localized potential,
C. Samanta* & A. Chakraborty, Phys. Lett. A (under review) (2020).
Reaction-diffusion dynamics in presence of two competing sink terms: Beyond Oster-Nishijima Model in barrierless reaction,
C. Samanta* & A. Chakraborty, Physica A (under riview) (2020).
Zero-curvature solution of instantaneous death models of barrierless reaction,
C. Samanta* & A. Chakraborty (under review) Theor. Chem. Acc. (2021).
Transition dynamics in two-state problems involving δ-function coupling,
C. Samanta* & A. Chakraborty (to be submitted) (2020).
Mapping solution of the Smoluchowski equation among different potential energy curves in the presence of sink term,
C. Samanta* & A. Chakraborty (under review) J. Math. Chem. (2020).
Papers with Ms. Swati Mudra
Diffusion-reaction approach to electronic relaxation in solution. An alternative simple derivation for two state model.
S. Mudra* & A. Chakraborty, Physica A, 545, 123779 (2020).
Exact solution of Schrodinger equation for time dependent ultra-short barrier,
S. Mudra* & A. Chakraborty, Phys. Scr., 94, 115227 (2019).
Analytical Solution of diffusion probability for a flat potential with a localized sink
H. Chhabra* S. Mudra & A. Chakraborty, Physica A, 555, 124573 (2020).
Reaction-diffusion approach to electronic relaxation in solution: Simple derivation for delta function sink models.
S. Mudra* and A. Chakraborty, Chem. Phys. Lett., 751, 137531 (2020).
Theory of Electronic Relaxation in solution with narrow sink of different shapes: An exact analytical solution.
S. Mudra* & A. Chakraborty, Chem. Phys. Lett. (under revision) (2020).
Barrierless Chemical Reactions in solution: An analytically solvable model.
S. Mudra* and A. Chakraborty, Phys. Rev. E (under revision) (2020).
Dynamics of thermal relaxation
S. Mudra* and A. Chakraborty, Physica A (under revision) (2020).
Effective Hamiltonian for two electron quantum dots from weak to strong parabolic confinement.
S. Mudra* & A. Chakraborty, Phys. Lett. A (under revision) (2019).
Effective Hamiltonian for highly excited electronic states of Helium based on four-dimensional Harmonic Oscillator.
S. Mudra* & A. Chakraborty, Phys. Lett. A (under revision) (2020).
Papers with Ms. Proma Mondal
Diffusion-reaction approach to electronic relaxation in solution: Exact solution of Smoluchowski equation for parabolic potential in presence of a rectangular sink,
P. Mondal* & A. Chakraborty, Chem. Phys., xxx, xxx (2021).
Diffusion on a flat potential with a rectangular sink of arbitrary width: Exact analytical solution in Laplace domain,
P. Mondal* & A. Chakraborty, Physica A, 567, 125707 (2021).
Diffusion on a flat potential in presences of a parabolic sink: Exact analytical solution in Laplace domain,
P. Mondal* & A. Chakraborty, Int. J. Chem. Theor. (under revision) (2021) link.
Analytical solution of time independent Schrodinger equation for two constant potentials with constant coupling,
P. Mondal* & A. Chakraborty, Mol. Phys. (under revision) (2021) link.
Analytical solution of Smoluchowski equation for a potential with a piece-wise linear sink,
P. Mondal* & A. Chakraborty, Physica A (under revision) (2021) link.
Papers with Ms. Anjali Jangid
Understanding the dynamics of dipole Solvation,
A. Jangid* & A. Chakraborty, Chem. Phys. Lett. (under revision) (2020).
Papers with Mr. Vishal Sharma
(will be updated soon.)
Papers with Ms. Nidhi Chamoli
(will be updated soon.)
Papers with Mr. Vasu Nagpal
(will be updated soon.)