Qua trovate il materiale dei seminari della seconda edizione.
Negli anni Ottanta il fisico tedesco Klaus von Klitzing replicò l’esperimento di Hall con una lastra semiconduttrice a temperatura prossima allo zero ed ottenne un risultato rivoluzionario che gli valse il premio Nobel per la fisica: sotto queste condizioni la resistenza di Hall non dipendeva linearmente dall’intensità del campo magnetico, ma assumeva valori interi a meno di costanti moltiplicative.
Questa scoperta aprì un settore di ricerca che mirava a capire il perché di questo fenomeno, se fosse possibile replicarlo con altri materiali, se fosse possibile applicarlo per lo sviluppo di nuove tecnologie.
Dopo quaranta anni di ricerche si è capito molto a riguardo ed i matematici hanno dato un contributo chiave l’origine di questi fenomeni risiede in un intreccio di geometria e meccanica quantistica, e la presenza della prima ha suggerito anche il nome dei materiali soggetti a questi fenomeni: isolanti topologici.
Lo scopo di questa presentazione è introdurre la platea ai postulati della meccanica quantistica ed alle tecniche geometriche usate per studiare tali modelli, applicando il tutto ad un modello semplificato fino a fornire qualche spunto sui progressi più recenti.