References

¹Khemani, P. (2022). Adult-Onset Cerebellar Ataxias. Practical Neurology, 22(7), 49-58. https://practicalneurology.com/articles/2022-sept/adult-onset-cerebellar-ataxias.  

²Ruano, L., Melo, C., Silva, M.C., & Coutinho, P. (2014). The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology, 42(3), 174-183. https://doi.org/10.1159/000358801

³Di Re, J., Wadsworth, P.A., & Laezza, F. (2017). Intracellular fibroblast growth factor 14: emerging risk factor for brain disorders. Frontiers in Cellular Neuroscience, 11, 103. https://doi.org/10.3389/fncel.2017.00103 

4Pellerin, D., Danzi, M.C., Wilke, C., Renaud, M., Fazal, S., Dicaire, M.J., ... & Brais, B. (2023). Deep Intronic FGF14 GAA Repeat Expansion in Late-Onset Cerebellar Ataxia. New England Journal of Medicine, 388(2), 128-141.

5Rafehi, H., Read, J., Szmulewicz, D.J., Davies, K.C., Snell, P., Fearnley, L.G., ... & Lockhart, P.J. (2023). An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. American Journal of Human Genetics, 110(1), 105-119.

6Wilke, C., Pellerin, D., Mengel, D., Traschütz, A., Danzi, M. C., Dicaire, M. J., ... & Synofzik, M. (2023). GAA-FGF14 ataxia (SCA27B): phenotypic profile, natural history progression and 4-aminopyridine treatment response. Brain, awad157. https://doi.org/10.1093/brain/awad157