Auffarth, Robert; Lucchini Arteche, Giancarlo; Rojas, Anita M. A decomposition of the Jacobian of a Humbert-Edge curve. Geometry at the frontier—symmetries and moduli spaces of algebraic varieties, 31–38, Contemp. Math., 766, 2021, Amer. Math. Soc. Electronic ISBN: 978-1-4704-6422-6. http://dx.doi.org/10.1090/conm/766/15371
Izquierdo, Milagros; Reyes-Carocca, Sebastián; Rojas, Anita M. On families of Riemann surfaces with automorphisms. J. Pure Appl. Algebra 225 (2021), no. 10, Paper No. 106704, 21 pp. https://doi.org/10.1016/j.jpaa.2021.106704.
Izquierdo, Milagros; Jiménez, Leslie; Rojas, Anita Decomposition of Jacobian varieties of curves with dihedral actions via equisymmetric stratification. Rev. Mat. Iberoam. 35 (2019), no. 4, 1259–1279.(DOI: 10.4171/rmi/1084).
Paulhus, Jennifer; Rojas, Anita M. Completely decomposable Jacobian varieties in new genera. Exp. Math. 26 (2017), no. 4, 430–445.
Auffarth, R.; Lange, H.; Rojas, A. M. A criterion for an abelian variety to be non-simple. J. Pure Appl. Algebra 221 (2017), no. 8, 1906–1925.
Barraza, Patricio; Rojas, Anita M. The group algebra decomposition of Fermat curves of prime degree. Arch. Math. (Basel) 104 (2015), no. 2, 145–155.
Carocca, Angel; Rodríguez, Rubí E.; Rojas, Anita M. Symmetric group actions on Jacobian varieties. Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces, 43–57, Contemp. Math., 629, Amer. Math. Soc., Providence, RI, 2014.
Lange, Herbert; Rodríguez, Rubí E.; Rojas, Anita M. Polarizations on abelian subvarieties of principally polarized abelian varieties with dihedral group actions. Math. Z. 276 (2014), no. 1-2, 397–420.
Behn, Antonio; Rodríguez, Rubí E.; Rojas, Anita M. Adapted hyperbolic polygons and symplectic representations for group actions on Riemann surfaces. J. Pure Appl. Algebra 217 (2013), no. 3, 409–426.
Lange, Herbert; Rojas, Anita M. Polarizations of isotypical components of Jacobians with group action. Arch. Math. (Basel) 98 (2012), no. 6, 513–526.
Carocca, Angel; Lange, Herbert; Rodríguez, Rubí E.; Rojas, Anita M. Prym and Prym-Tyurin varieties: a group-theoretical construction. In the tradition of Ahlfors-Bers. V, 49–60, Contemp. Math., 510, Amer. Math. Soc., Providence, RI, 2010.
Arenas-Carmona, Luis; Rojas, Anita M. Unramified prime covers of hyperelliptic curves and pairs of p-gonal curves. In the tradition of Ahlfors-Bers. V, 35–47, Contemp. Math., 510, Amer. Math. Soc., Providence, RI, 2010.
Carocca, Angel; Lange, Herbert; Rodríguez, Rubí E.; Rojas, Anita M. Prym-Tyurin varieties via Hecke algebras. J. Reine Angew. Math. 634 (2009), 209–234.
Carocca, Angel; Lange, Herbert; Rodríguez, Rubí E.; Rojas, Anita M. Prym-Tyurin varieties using self-products of groups. J. Algebra 322 (2009), no. 4, 1251–1272.
Carocca, Angel; Lange, Herbert; Rodríguez, Rubí E.; Rojas, Anita M. Products of Jacobians as Prym-Tyurin varieties. Geom. Dedicata 139 (2009), 219–231.
Lange, Herbert; Rojas, Anita M. A Galois-theoretic approach to Kanev's correspondence. Manuscripta Math. 125 (2008), no. 2, 225–240.
Rojas, Anita M. Group actions on Jacobian varieties. Rev. Mat. Iberoam. 23 (2007), no. 2, 397–420.
Lange, H.; Recillas, S.; Rojas, A. M. A family of Prym-Tyurin varieties of exponent 3. J. Algebra 289 (2005), no. 2, 594–613.
Plarre, K.; Rojas, A. M.; Rojas, R. A. Analytical solution to the polynomial diophantine equation: development and application to Generalised Predictive Control analysis, IEE CONFERENCE PUBLICATIONS 455-1, 804-809. doi.org/10.1049/cp:19980332.