La observación de un fenómeno es en general, incompleta a menos que dé lugar a una información cuantitativa. Para obtener dicha información, se requiere la medición de una propiedad física. Así, la medición constituye una buena parte de la rutina diaria del físico experimental.
La medición es la técnica por medio de la cual asignamos un número a una propiedad física, como resultado de una comparación de dicha propiedad con otra similar tomada como patrón, la cual se ha adoptado como unidad.
Supongamos una habitación cuyo suelo está cubierto de baldosas, tal como se ve en la figura, tomando una baldosa como unidad, y contando el número de baldosas medimos la superficie de la habitación, 30 baldosas. En la figura inferior, la medida de la misma superficie da una cantidad diferente 15 baldosas.
La medida de una misma magnitud física (una superficie) da lugar a dos cantidades distintas debido a que se han empleado distintas unidades de medida.
Este ejemplo, nos pone de manifiesto la necesidad de establecer una única unidad de medida para una magnitud dada, de modo que la información sea comprendida por todas las personas.
En el artículo único del REAL DECRETO 1317/1989, de 27 de octubre de 1989 por el que se establecen las Unidades Legales de Medida, publicado el 3 de noviembre, se dice que
1.-El Sistema legal de Unidades de Medida obligatorio en España es el sistema métrico decimal de siete unidades básicas, denominado Sistema Internacional de Unidades (SI), adoptado en la Conferencia General de Pesas y Medidas y vigente en la Comunidad Económica Europea.
En la tabla siguiente, se recogen las distintas normativas publicadas en el Boletín Oficial del Estado (BOE)
Este sistema de medidas se estableció en Francia con el fin de solventar los dos grandes inconvenientes que presentaban las antiguas medidas:
Unidades con el mismo nombre variaban de una provincia a otra
Las subdivisiones de las diferentes medidas no eran decimales, lo cual representaba grandes complicaciones para el cálculo.
Se trataba de crear un sistema simple y único de medidas que pudiese reproducirse con exactitud en cualquier momento y en cualquier lugar, con medios disponibles para cualquier persona.
En 1795 se instituyó en Francia el Sistema Métrico Decimal. En España fue declarado obligatorio en 1849.
El Sistema Métrico se basa en la unidad "el metro" con múltiplos y submúltiplos decimales. Del metro se deriva el metro cuadrado, el metro cúbico, y el kilogramo que era la masa de un decímetro cúbico de agua.
En aquella época la astronomía y la geodesia eran ciencias que habían adquirido un notable desarrollo. Se habían realizado mediciones de la longitud del arco del meridiano terrestre en varios lugares de la Tierra. Finalmente, la definición de metro fue elegida como la diezmillonésima parte de la longitud de un cuarto del meridiano terrestre. Sabiendo que el radio de la Tierra es 6.37·106 m
2π·6.37·106/(4·10·106)=1.0006 m
Como la longitud del meridiano no era práctica para el uso diario. Se fabricó una barra de platino, que representaba la nueva unidad de medida, y se puso bajo la custodia de los Archives de France, junto a la unidad representativa del kilogramo, también fabricado en platino. Copias de del metro y del kilogramo se distribuyeron por muchos países que adoptaron el Sistema Métrico.
La definición de metro en términos de una pieza única de metal no era satisfactoria, ya que su estabilidad no podía garantizase a lo largo de los años, por mucho cuidado que se tuviese en su conservación.
A finales del siglo XIX se produjo un notable avance en la identificación de las líneas espectrales de los átomos. A. A. Michelson utilizó su famoso interferómetro para comparar la longitud de onda de la línea roja del cadmio con el metro. Esta línea se usó para definir la unidad denominada angstrom.
En 1960, la XI Conférence Générale des Poids et Mesures abolió la antigua definición de metro y la reemplazó por la siguiente:
El metro es la longitud igual a 1 650 763.73 longitudes de onda en el vacío de la radiación correspondiente a la transición entre los niveles 2p10 y 2d5 del átomo de kriptón 86.
Este largo número se eligió de modo que el nuevo metro tuviese la misma longitud que el antiguo.
La velocidad de la luz en el vacío c es una constante muy importante en física, y que se ha medido desde hace mucho tiempo de forma directa, por distintos procedimientos. Midiendo la frecuencia f y la longitud de onda λ de alguna radiación de alta frecuencia y utilizando la relación c=λ·f se determina la velocidad de la luz c de forma indirecta con mucha exactitud.
El valor obtenido en 1972, midiendo la frecuencia y la longitud de onda de una radiación infrarroja, fue c=299 792 458 m/s con un error de ±1.2 m/s, es decir, cuatro partes en 109.
La XVII Conférence Générale des Poids et Mesures del 20 de Octubre de 1983, abolió la antigua definición de metro y promulgó la nueva:
El metro es la longitud de trayecto recorrido en el vacío por la luz durante un tiempo de 1/299 792 458 de segundo.
La nueva definición de metro en vez de estar basada en un único objeto (la barra de platino) o en una única fuente de luz, está abierta a cualquier otra radiación cuya frecuencia sea conocida con suficiente exactitud.
La velocidad de la luz queda convencionalmente fijada y exactamente igual a 299 792 458 m/s debida a la definición convencional del término m (el metro) en su expresión.
Otra cuestión que suscita la nueva definición de metro, es la siguiente: ¿no sería más lógico definir 1/299 792 458 veces la velocidad de la luz como unidad básica de la velocidad y considerar el metro como unidad derivada?. Sin embargo, la elección de las magnitudes básicas es una cuestión de conveniencia y de simplicidad en la definición de las magnitudes derivadas.
Unidad de ángulo sólido
Unidad de ángulo plano
El radián (rad) es el ángulo plano comprendido entre dos radios de un círculo que, sobre la circunferencia de dicho círculo, interceptan un arco de longitud igual a la del radio.
El estereorradián (sr) es el ángulo sólido que, teniendo su vértice en el centro de una esfera, intercepta sobre la superficie de dicha esfera un área igual a la de un cuadrado que tenga por lado el radio de la esfera.
Las unidades SI derivadas se definen de forma que sean coherentes con las unidades básicas y suplementarias, es decir, se definen por expresiones algebraicas bajo la forma de productos de potencias de las unidades SI básicas y/o suplementarias con un factor numérico igual 1.
Varias de estas unidades SI derivadas se expresan simplemente a partir de las unidades SI básicas y suplementarias. Otras han recibido un nombre especial y un símbolo particular.
Si una unidad SI derivada puede expresarse de varias formas equivalentes utilizando, bien nombres de unidades básicas y suplementarias, o bien nombres especiales de otras unidades SI derivadas, se admite el empleo preferencial de ciertas combinaciones o de ciertos nombres especiales, con el fin de facilitar la distinción entre magnitudes que tengan las mismas dimensiones. Por ejemplo, el hertz se emplea para la frecuencia, con preferencia al segundo a la potencia menos uno, y para el momento de fuerza, se prefiere el newton metro al joule.
Los símbolos de las Unidades SI, con raras excepciones como el caso del ohm (Ω), se expresan en caracteres romanos, en general, con minúsculas; sin embargo, si dichos símbolos corresponden a unidades derivadas de nombres propios, su letra inicial es mayúscula. Ejemplo, A de ampere, J de joule.
Los símbolos no van seguidos de punto, ni toman la s para el plural. Por ejemplo, se escribe 5 kg, no 5 kgs
Cuando el símbolo de un múltiplo o de un submúltiplo de una unidad lleva exponente, ésta afecta no solamente a la parte del símbolo que designa la unidad, sino al conjunto del símbolo. Por ejemplo, km2 significa (km)2, área de un cuadrado que tiene un km de lado, o sea 106 metros cuadrados y nunca k(m2), lo que correspondería a 1000 metros cuadrados.
El símbolo de la unidad sigue al símbolo del prefijo, sin espacio. Por ejemplo, cm, mm, etc.
El producto de los símbolos de de dos o más unidades se indica con preferencia por medio de un punto, como símbolo de multiplicación. Por ejemplo, newton-metro se puede escribir N·m Nm, nunca mN, que significa milinewton.
Cuando una unidad derivada sea el cociente de otras dos, se puede utilizar la barra oblicua (/), la barra horizontal o bien potencias negativas, para evitar el denominador.
No se debe introducir en una misma línea más de una barra oblicua, a menos que se añadan paréntesis, a fin de evitar toda ambigüedad. En los casos complejos pueden utilizarse paréntesis o potencias negativas.
m/s2 o bien m·s-2 pero no m/s/s. (Pa·s)/(kg/m3) pero no Pa·s/kg/m3
Los nombres de las unidades debidos a nombres propios de científicos eminentes deben de escribirse con idéntica ortografía que el nombre de éstos, pero con minúscula inicial. No obstante, serán igualmente aceptables sus denominaciones castellanizadas de uso habitual, siempre que estén reconocidas por la Real Academia de la Lengua. Por ejemplo, amperio, voltio, faradio, culombio, julio, ohmio, voltio, watio, weberio.
Los nombres de las unidades toman una s en el plural (ejemplo 10 newtons) excepto las que terminan en s, x ó z.
En los números, la coma se utiliza solamente para separar la parte entera de la decimal. Para facilitar la lectura, los números pueden estar divididos en grupos de tres cifras (a partir de la coma, si hay alguna) estos grupos no se separan por puntos ni comas. Las separación en grupos no se utiliza para los números de cuatro cifras que designan un año.