Outcomes

Research papers, peer-reviewed

*All the papers are available upon request.

**Boldface; first-author or corresponding author

Submitted, In review, or In revision

None

Published or Accepted

2024

[56] Kawana, K., Taketani, F., Matsumoto, K., Tobo, Y., Iwamoto, Y., Miyakawa, T., Ito, A., and Kanaya, Y. (2024), Roles of marine biota in the formation of atmospheric bioaerosols, cloud condensation nuclei, and ice-nucleating particles over the North Pacific Ocean, Bering Sea, and Arctic Ocean, Atmos. Chem. Phys., 24, 17771799, https://doi.org/10.5194/acp-24-1777-2024, 2024.

2023

[55] Miyakawa, T., A. Ito, C. Zhu, A. Shimizu, E. Matsumoto, Y. Mizuno,  and Y. Kanaya (2023), Trace elements in PM2.5 aerosols in East Asian outflow in the spring of 2018: Emission, transport, and source apportionment, Atmos. Chem. Phys., 23, 1460914626, https://doi.org/10.5194/acp-23-14609-2023. (can be freely downloaded from the journal website.)

[54] Nagashima, K., H. Kawakami, K. Sugie, T. Fujiki, J. Nishioka, Y. Iwamoto, T. Takemura, T. Miyakawa, F. Taketani, and M. Noguchi Aita (2023), Asian dust-deposition flux to the subarctic Pacific estimated using single quartz particles. Sci Rep 13, 15424. https://doi.org/10.1038/s41598-023-41201-6. (press release from JAMSTEC)

[53] Miyakawa, T., F. Taketani, Y. Tobo, K. Matsumoto, M. Yoshizue, M. Takigawa, and Y. Kanaya (2023), Measurements of Aerosol Particle Size Distributions and INPs Over the Southern Ocean in the Late Austral Summer of 2017 on board the R/V Mirai: Importance of the marine boundary layer structure, Earth and Space Science, 10, e2022EA002736, https://doi.org/10.1029/2022EA002736. (can be freely downloaded from the journal website.)

[52] Ito, A., and T. Miyakawa (2023), Aerosol iron from metal production as a secondary source of bioaccessible iron, Environ. Sci. Technol., https://doi.org/10.1021/acs.est.2c06472. (press release from JAMSTEC)

2022

[51] Taketani, F., T. Miyakawa, M. Takigawa, M. Yamaguchi, Y. Komazaki, P. Mordovskoi, H. Takashima, C. Zhu, S. Nishino, Y. Tohjima, and Y. Kanaya (2022), Characteristics of atmospheric black carbon and other aerosol particles over the Arctic Ocean in early autumn 2016: Influence from biomass burning as assessed with observed microphysical properties and model simulations, Sci. Tot. Environ., 848, 157671, https://doi.org/10.1016/j.scitotenv.2022.157671.

[50] Takashima, H., Kanaya, Y., Kato, S., Friedrich, M. M., Van Roozendael, M., Taketani, F., Miyakawa, T., Komazaki, Y., Cuevas, C. A., Saiz-Lopez, A., and Sekiya, T. (2022), Full latitudinal marine atmospheric measurements of iodine monoxide, Atmos. Chem. Phys., 22, 4005-4018, https://doi.org/10.5194/acp-22-4005-2022.

2021

[49] Kanaya, Y., K. Yamaji, T. Miyakawa et al. (2021) Dominance of the residential sector in Chinese black carbon emissions as identified from downwind atmospheric observations during the COVID-19 pandemic, Sci Rep, 11, 23378, https://doi.org/10.1038/s41598-021-02518-2

[48] Kawana, K., K. Matsumoto, F. Taketani, T. Miyakawa, and Y. Kanaya (2021) Fluorescent biological aerosol particles over the central Pacific Ocean: covariation with ocean surface biological activity indicators, Atmos. Chem. Phys., 21, 15969-15983, https://doi.org/10.5194/acp-21-15969-2021.

[47] Zhu, C., T. Miyakawa, H. Irie, Y. Choi, F. Taketani, and Y. Kanaya (2021), Light-absorption properties of brown carbon aerosols in the Asian outflow: Implications of a combination of filter and ground remote-sensing observations at Fukue Island, Japan, Sci. Total Environ.,797, 149155, https://doi.org/10.1016/j.scitotenv.2021.149155

[46] Kuwata, M., T. Miyakawa, S. Yokoi, Md. F. Khan, and M. T. Latif (2021), The Madden-Julian Oscillation Modulates the Air Quality of the Maritime Continent, Earth Space Sci., accepted, https://doi.org/10.1029/2021EA001708

[45] Yamashita, Y., M. Takigawa, D. Goto, H. Yashiro, M. Satoh, Y. Kanaya, F. Taketani, T. Miyakawa (2021), Effect of Model Resolution on Black Carbon Transport from East Asia to the Arctic Associated with the Well-developed Low-pressure Systems in September, submitted to J. Met. Soc. Jp., 99, https://doi.org/10.2151/jmsj.2021-014.

[44] Konya, K., M. Takigawa, M. Yamaguchi, T. Miyakawa, S. O’Neel (2021), Mass concentration and origin of black carbon in spring snow on glaciers in the Alaskan Range, Polar Sci., https://doi.org/10.1016/j.polar.2020.100572.

2020

[43] Kanaya, Y., K. Yamaji, T. Miyakawa, F. Taketani, C. Zhu, Y. Choi, Y. Komazaki, K. Ikeda, Y. Kondo, Z. Klimont (2020), Rapid reduction of black carbon emissions from China based on 2009–2019 observations from Fukue Island, Japan, Atmos. Chem. Phys., 20, 63396356, https://doi.org/10.5194/acp-20-6339-202.

[42] Zhu, C., Y. Kanaya, M. Takigawa, K. Ikeda, H. Tanimoto, F. Taketani, T. Miyakawa, H. Kobayashi, I. Pisso (2020), Flexpart v10.1 simulation of source contributions to Arctic black carbon, Atmos. Chem. Phys., 20, 1641–1656, https://doi.org/10.5194/acp-20-1641-2020.

[41] Miyakawa, T.,  P. Mordovskoi, and Y. Kanaya (2020), Evaluation of black carbon mass concentrations measured using a miniaturized aethalometer in comparison with continuous soot monitoring system (COSMOS) and single-particle soot photometer (SP2), Aerosol Sci. Technol., 54:7, 811825, https://doi.org/10.1080/02786826.2020.1724870. (can be freely downloaded from the journal website.)

2019

[40] Miyakawa, T., Y. Komazaki, C. Zhu, F. Taketani, X. Pan, Z. Wang, and Y. Kanaya (2019), Characterization of carbonaceous aerosols in Asian outflow in the spring of 2015: importance of non-fossil fuel sources, Atmos. Environ., 214, 116858, https://doi.org/10.1016/j.atmosenv.2019.116858 (Press release from JAMSTEC)

[39] Kanaya, Y., K. Miyazaki, F.,Taketani, T. Miyakawa, H. Takashima, Y. Komazaki, X. Pan, S. Kato, K. Sudo, J. Inoue, K. Sato, and K. Oshima (2019), Ozone and carbon monoxide observations over open oceans on R/V Mirai from 67°S to 75°N during 2012 to 2017: Testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport, Atmos. Chem. Phys., 19, 7233-7254, https://doi.org/10.5194/acp-19-7233-2019.

2018

[38] Budisulistiorini, S. H., M. Riva, M. Williams, T. Miyakawa, J. Chen, M. Itoh, J. Surratt, and M. Kuwata (2018), Dominant contribution of oxygenated organic aerosol to haze particles from real-time observation in Singapore during an Indonesian wildfire event in 2015, Atmos. Chem. Phys., 18, 16481-16498, https://doi.org/10.5194/acp-18-16481-2018.

[37] Kuwata, M., G. Neelam-Naganathan, T. Miyakawa, M. F. Khan, O. Kozan, M. Kawasaki, S. Sumin, and M. T. Latif (2018), Constraining the Emission of Particulate Matter from Indonesian Peatland Burning Using Continuous Observation Data, J. Geophys. Res., 123, doi: 10.1029/2018JD028564.

[36] Chen, J., S. H. Budisulistiorini, T. Miyakawa, Y. Komazaki, and M. Kuwata (2017), Secondary aerosol formation promotes water uptake by organic-rich wildfire haze particles in Equatorial Asia, Atmos. Chem. Phys., 18, 7781-7798,  https://doi.org/10.5194/acp-18-7781-2018.

2017

[35] Pan, X., Kanaya, Y., Taketani, F., Miyakawa, T., Inomata, S., Komazaki, Y., Tanimoto, H., Wang, Z., Uno, I., and Wang, Z. (2017), Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments, Atmos. Chem. Phys., 17, 13001-13016, doi:10.5194/acp-17-13001-2017.

[34] Chen, J., S. H. Budisulistiorini, M. Itoh, W. Lee, T. Miyakawa, Y. Komzaki, L. Yang, and M. Kuwata (2017), Water Uptake by Fresh Indonesian Peat Burning Particles is Limited by Water Soluble Organic Matters, Atmos. Chem. Phys., 17, 11591-11604, doi:10.5194/acp-17-11591-2017.

[33] Miyakawa, T., N. Oshima, F. Taketani, Y. Komazaki, A. Yoshino, A. Takami, Y. Kondo, and Y. Kanaya (2017), Alteration of the size distributions and mixing states of black carbon through transport in the boundary layer in East Asia,  Atmos. Chem. Phys., 17, 5851-5864, doi:10.5194/acp-17-5821-2017.

2016

[32] Kanaya, Y., X. Pan, T. Miyakawa, Y. Komazaki, F. Taketani, I. Uno, and Y. Kondo (2016), Long-term observations of black carbon mass concentrations at Fukue Island, western Japan, during 2009-2015: Constraining wet removal rates and emission strengths from East Asia, Atmos. Chem. Phys., 16, 10689-10705.

[31] Miyakawa, T., Y. Kanaya, Y. Komazaki, T. Miyoshi, H. Nara, A. Takami. N. Moteki, M. Koike, Y. Kondo (2016), Emission regulations altered the concentrations, origin, and formation processes of carbonaceous aerosols in Tokyo metropolitan area, Aerosol Air Qual. Res., 16: 1603-1614.

[30] Taketani, F., T. Miyakawa, H. Takashima, Y. Komazaki, X. Pan, Y. Kanaya, and J. Inoue (2016), Ship-borne observations of atmospheric black carbon aerosol particles over the Arctic Ocean, Bering Sea, and North Pacific Ocean during September 2014, J. Geophys. Res., 121, doi:10.1002/2015JD023648.

[29] Ozawa, Y., N. Takeda, T. Miyakawa, M. Takei, N. Hirayama, and N. Takegawa (2016), Evaluation of a Particle Trap Laser Desorption Mass Spectrometer (PT-LDMS) for the Quantification of Sulfate Aerosols, Aerosol Sci. Technol., 50, 2, 173-186.

[28] Miyakawa, T., Y. Kanaya, Y. Komazaki, F. Taketani, X. Pan、M. Irwin, and J. Symonds (2016), Intercomparison between a single particle soot photometer and evolved gas analysis in an industrial area in Japan:  Implications for the consistency of soot aerosol mass concentration measurements, Atmos. Environ., 127, 14-21.

2015

[27] Taketani, F., Y. Kanaya, T. Nakamura, N. Takeda, K. Koizumi, N. Hirayama, T. Miyakawa, X. Pan, N. Moteki, and N. Takegawa (2015), Measurement of Atmospheric Suspended Single Aerosol Particles using a Tandem Combination of Laser-induced Fluorescence and Incandescence Techniques, J. Aerosol Sci., 87, 102-110.

[26] Inomata, S., H. Tanimoto, X. Pan, F. Taketani, F. Taketani, Y. Komazaki, T. Miyakawa, Y. Kanaya, and Z. Wang (2015), Laboratory measurements of emission factors of nonmethane volatile organics compounds from burning of Chinese crop residues, J. Geophys. Res.,120, doi:10.1002/2014JD022761

[25] Miyakawa, T., Y. Kanaya, F. Taketani, M. Tabaru, Y. Ozawa, and N. Takegawa (2015), Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: Potential Impacts of non-biological materials on autofluorescence measurements of airborne particles, J. Geophys. Res., 120, doi:10.1002/2014JD022189 

2014

[24] Miyakawa, T., N. Takeda, K. Koizumi, M. Tabaru, Y. Ozawa, N. Hirayama, and N. Takegawa (2014), A New Laser Induced Incandescence - Mass Spectrometric Analyzer (LII-MS) for online Measurement of Aerosol Composition Classified by Black Carbon Mixing State, Aerosol Sci. Technol., 48;8, 853-863.

2013

[23] Irwin, M., Y. Kondo, N. Moteki, and T. Miyakawa (2013), Evaluation of a Heated-Inlet for Calibration of the SP2, Aerosol Sci. Technol., 47:8, 895-905.

[22] Miyakawa, T., R. Matsuzawa, M. Katayama, and N. Takegawa (2013), Reconsidering adhesion and bounce of submicron particles upon high-velocity impact, Aerosol Sci. Technol., 47:5, 472-481.

2012

[21] Takegawa, N., T. Miyakawa, T. Nakamura, Y. Sameshima, M. Takei, Y. Kondo, N. Hirayama (2012), Evaluation of a New Particle Trap in a Lase Desorption Mass Spectrometer for On-line Measurement of Aerosol Composition, Aerosol Sci. Technol., 46:4, 428-443.

2011

[20] Kondo, Y.,  L. Sahu, N. Moteki, F. Khan, N. Takegawa, X. Liu, M. Koike, and T. Miyakawa (2011),  Consistency and Traceability of Black Carbon Measurements Made by Laser-Induced Incandescence, Thermal-Optical Transmittance, and Filter-Based Photo-Absorption Techniques, Aerosol Sci. Technol., 45:2, 295-312.

[19] R. Xiao, N. Takegawa, M. Zheng, Y. Kondo, Y. Miyazaki, T. Miyakawa, M. Hu, M. Shao, L. Zeng, Y. Gong, K. Lu, Z. Deng, Y. Zhao, and Y. H. Zhang (2011), Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign, Atmos. Phys. Chem. Discuss., 11, 1891-1937.

[18] Verma, R. L., Y. Kondo, N. Oshima, H. Matsui, K. Kita, L. K. Sahu, S. Kato, Y. J. Kajii, A. Takami, and T. Miyakawa (2011), Seasonal variations of the transport of black carbon and carbon monoxide from the Asian continent to the western Pacific in the boundary layer, J. Geophys. Res., doi:10.1029/2011JD015830

2010

[17] Kondo, Y., N. Takegawa, T. Miyakawa, M. Koike, Y. Miyazaki, Y. Kanaya, M. Mochida, M. Kuwata, Y. Morino, and M. Shiraiwa (2010),  Formation and transport of aerosols in Tokyo in relation to their physical and chemical properties: a review, J. Meteor. Soc. Japan, 88(4), 597-624.

2009

[16] Miyazaki , Y., Y. Kondo, M. Shiraiwa, N. Takegawa, T. Miyakawa, S. Han, K. Kita, M. Hu, Z. Q. Deng, Y. Zhao, N. Sugimoto, D. R. Blake, and R. J.    Weber (2009), Chemical characterization of water-soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006, J. Geophys. Res., 114, D14208, doi:10.1029/2009JD011736.

[15] Takegawa, N., T. Miyakawa, M. Watanabe, Y. Kondo, Y. Miyazaki, S. Han, Y. Zhao, D.   V. Pinxteren, E. Bruggemann, T. Gnauk, H. Herrmann, R. Xiao, Z. Q. Deng, M. Hu,, T. Zhu, and Y. Zhang (2009), Performance of an Aerodyne Aerosol Mass Spectrometer (AMS) during Intensive Campaigns in China in the Summer of 2006, Aerosol Sci. Tech., 43: 3, 189 -204,

[14] Takegawa , N., T. Miyakawa, M. Kuwata, Y. Kondo, Y. Zhao, S. Han, K. Kita, Y. Miyazaki, Z. Q. Deng, R. Xiao, M. Hu, D. V. Pinxteren, H. Herrmann, A. Hofzumahaus, F. Holland, A. Wahner, D. R. Blake, N. Sugimoto, T. Zhu (2009), Variability of submicron aerosol observed at a rural site in Beijing in the summer of 2006, J. Geophys. Res., 114(D00G05),  doi:10.1029/2008JD010857.

[13] Xiao, R., N. Takegawa, Y. Kondo, Y. Miyazaki, T. Miyakawa, M. Hu, M. Shao, L. M. Zeng, A. Hofzumahaus, F. Holland, K. Lu, N. Sugimoto, Y. Zhao, and Y.H. Zhang (2009), Formation of submicron sulfate and organic aerosols in the     outflow from the urban region of the Pearl River Delta in China, Atmos. Environ., 43, 3574-3764 

2008

[12]  Miyakawa, T., N. Takegawa, and Y. Kondo (2008), Photochemical evolution of submicron aerosol composition in the Tokyo megacity region in summer, J. Geophys. Res., 113(D14304), doi:10.1029/2007JD009493

[11] Mochida, M., T. Miyakawa, N. Takegawa, Y. Morino, K. Kawamura, and Y. Kondo (2008), Significant alteration in the hygroscopic properties of urban aerosol particles by the secondary formation of organics, Geophys. Res. Lett., 35(L02804),doi:10.1029/2007GL031310. 

2007

[10] Miyakawa, T., N. Takegawa, and Y. Kondo (2007), Removal of sulfur dioxide and formation of sulfate aerosol in Tokyo, J. Geophys. Res., 112(D13209), doi:10.1029/2006JD007896. 

[9] Kondo, Y., Y. Miyazaki, N. Takegawa, T. Miyakawa, R. J. Weber, J. L. Jimenez, Q. Zhang, and D. R. Worsnop (2007), Oxygenated and water-soluble organic aerosols in Tokyo, J. Geophy. Res., 112(D01203), doi:10.1029/2006JD007056. 

[8] Moteki, N., Y. Kondo, Y. Miyazaki, N. Takegawa, Y. Komazaki, G. Kurata, T. Shirai, D. R. Blake, T. Miyakawa, and M. Koike (2007), Evolution of mixing state of black carbon particles: Aircraft measurements over the western Pacific in March 2004, Geophys. Res. Lett., 34(L11803), doi:10.1029/2006GL028943.

[7] Takegawa, N., T. Miyakawa, K. Kawamura, and Y. Kondo (2007), Contribution of selected dicarboxylic and w-oxocarboxylic acids in ambient aerosol to the m/z 44 signal of an Aerodyne Aerosol Mass Spectrometer, Aerosol Sci. Technol., 41, 418-437.

2006

[6] Kondo, Y., Y. Komazaki, Y. Miyazaki, N. Moteki, N. Takegawa, D. Kodama, S. Deguchi, M. Nogami, M. Fukuda, T. Miyakawa, Y. Morino, M. Koike, H. Sakurai, and K. Ehara (2006), Temporal variations of elemental carbon in Tokyo, J. Geophys. Res., 111(D12205), doi:10.1029/2005JD006257.

[5] Mochida, M., M. Kuwata, T. Miyakawa, N. Takegawa, K. Kawamura, and Y. Kondo (2006), Relationship between hygroscopicity and cloud condensation nuclei activity for urban aerosols in Tokyo, J. Geophys. Res., 111(D23204),doi:10.1029/2005JD006980. 

[4] Morino, Y., Y. Kondo, N. Takegawa, Y. Miyazaki, K. Kita, Y. Komazaki, M. Fukuda, T. Miyakawa, N. Moteki, and D. R. Worsnop (2006), Partitioning of HNO3 and particulate nitrate over Tokyo: Effect of vertical mixing, J. Geophys. Res.,111(D15215), doi:10.1029/2005JD006887. 

[3] Takegawa, N., T. Miyakawa, Y. Kondo, J. L. Jimenez, Q. Zhang, D. R. Worsnop, and M. Fukuda (2006), Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne aerosol mass spectrometer, J. Geophys. Res., 111(D11206), doi:10.1029/2005JD006515. 

[2] Takegawa, N., T. Miyakawa, Y. Kondo, D. R. Blake, Y. Kanaya, M. Koike, M. Fukuda, Y. Komazaki, Y. Miyazaki, A. Shimono, and T. Takeuchi (2006), Evolution of submicron organic aerosol in polluted air exported from Tokyo, Geophys. Res. Lett., 33(L15814), doi:10.1029/2006GL025815. 

2005

[1] Takegawa, N., Y. Miyazaki, Y. Kondo, Y. Komazaki, T. Miyakawa, J. L. Jimenez, J. T. Jayne, D. R. Worsnop, J. Allan, and R. J. Weber (2005), Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with other aerosol instruments, Aerosol Sci. Technol., 39, 760-770. 


In Japanese (peer reviewed)

[3] 金谷有剛、竹谷文一、宮川拓真 (2019)、大気中蛍光性バイオエアロゾル粒子ののオンライン計測、地球環境、Vol. 24, No. 1., 53-61.

[2] 飯田健次郎、宮川拓真、桜井博 (2017)、エアロゾル学基礎講座 ー計測ー 3.分級①:微分型移動度分析器

[1] 武田直希、小泉和裕、田原雅哉武、宮川拓真、竹谷文一 (2013)、PM2.5発生源特定を可能発生源特定を可能にするエアロゾル複合分析技術の開発 (第27回独創性を拓く先端技術大賞 特別賞、リンク)


Data

Miyakawa, T., F. Taketani, Y. Tobo, K. Matsumoto, M. Yoshizue, M. Takigawa, and Y. Kanaya. (2023). Aerosol particles observed onboard the research vessel Mirai over the Southern Ocean in the austral summer of 2017 (Version 1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7532898

Miyakawa, T., Ito, A., Zhu, C., and Kanaya, Y. (2023). Observed and modeled aerosol compositions at Fukue island in the spring of 2018 (Version 1) [Data set]. Zenodo, https://doi.org/10.5281/zenodo.8385331


PhD. Thesis

Takuma Miyakawa, Studies on transformation and transport of submicron aerosols in urban atmosphere, The University of Tokyo, March, 2008 (available upon a request)


Patents

Particle beam forming device WO2014087746A1

Particle analyzing method and particle analyzing device WO2014141994A1


Presentations (except for co-authored one)

International

Miyakawa, T., N. Takegawa, and Y. Kondo, Formation and Removal of Sulfate Aerosol and Sulfur Dioxide in Tokyo measured using Aerodyne Aerosol Mass Spectrometer (AMS), International Workshop on Variability and Predictability of the Earth Climate System, Tokyo, September, 2005 (Poster)

Miyakawa, T., R. Matsuzawa, M. Katayama, and N. Takeagwa, Bounce of Submicron Particles: New Insights from a hydrocode simulation, AAAR Annual Conference, Orland, October, 2011. (Poster)

Miyakawa, T., N. Takeda, K. Koizumi, M. Tabaru, Y. Ozawa, N. Hirayama, and N. Takegawa, Development and Evaluation of a Laser Induced Incandescence - Mass Spectrometric Analyzer (LII-MS) for Online Measurements of Aerosol Chemical Composition, AAAR annual conference, Orland, October, 2013 (Oral)

Miyakawa, T., Y. Kanaya, F. Taketani, M. Tabaru, Y. Ozawa, and N. Takegawa, Fluorescence aerosols in Tokyo observed using a single-particle fluorescence sensor in the spring of 2013, International Aerosol Conference, Busan, South Korea, August, 2014 (Poster)

Miyakawa, T., et al., Characterization of Carbonaceous Aerosols in Tokyo Metropolitan Area in Terms of Multiple Chemical Analyses: Effects of the Diesel Emission Regulations, Asian Aerosol Conference, Kanazawa, Japan, June, 2015 (Poster)

Miyakawa, T., et al., Ground- and Ship-based Measurements of Refractory Black Carbon Using a Single Particle Soot Photometer, European Aerosol Conference, Milan, Italy, September, 2015 (Poster)

Miyakawa T., et al., Aging and removal of Black Carbon measured using a Single Particle Soot Photometer in East Asia, American Geophysical Union fall meeting, San Francisco, US, December, 2015 (Poster)

Miyakawa, T., et. al., Source apportionment of carbonaceous aerosols in East Asia based on radiocarbon and molecular marker analyses, European Aerosol Conference, Tours, France, 2016 (Poster)

Miyakawa, T., et al., Aerosol Particle Size Distributions and Compositions over the Southern Ocean in the Austral Summer of 2017, 10th International Aerosol Conference, St Louis, US, October,  2018 (Oral)


Domestic

宮川他、東京における二酸化硫黄、硫酸塩エアロゾル濃度の変動、日本気象学会2003年秋季大会、宮城県仙台市、2003年10月(ポスター)

宮川他、エアロゾル質量分析計により測定された都市大気における有機エアロゾルの組成について、第14回大気化学シンポジウム、愛知県豊川市、2004年1月(ポスター)

宮川他、東京における硫酸塩エアロゾル濃度の挙動、日本気象学会2004年春季大会、東京都千代田区、2004年5月(口頭)

宮川他、東京における硫酸塩エアロゾルの濃度、粒径分布の変動、第10回大気化学討論会、東京都目黒区、2004年6月(ポスター)

宮川他、都市大気エアロゾルの粒子密度および形状因子の見積もり、日本気象学2004年秋季大会、福岡県博多市、2004年10月(口頭)

宮川他、エアロゾル質量分析計により測定された関東郊外域におけるPM1エアロゾル、日本地球惑星科学連合2006年大会、千葉県千葉市、2006年5月(口頭)

宮川他、衝撃解析コードを用いた微小粒子の反跳現象に関する研究、第28回エアロゾル科学・技術研究討論会、大阪府堺市、2011年8月(口頭)

宮川他、新規開発された質量分析計を用いた実時間型エアロゾル組成計測器(1): 装置基本性能の評価、第53回大気環境学会、神奈川県横浜市、2012年9月(ポスター)

宮川他、新規開発された質量分析計を用いた実時間型エアロゾル組成計測器(2): エアロゾル組成分析能の初期評価、第53回大気環境学会、神奈川県横浜市、2012年9月(ポスター)

宮川他、レーザー誘起白熱法‐エアロゾル質量分析複合装置によるブラックカーボン混合状態別の化学組成計測手法の開発、第30回エアロゾル科学・技術研究討論会、京都府京都市、2013年8月(口頭)

宮川他、レーザー誘起白熱法‐エアロゾル質量分析複合装置によるブラックカーボン混合状態別の化学組成計測手法、第54回大気環境学会、新潟県新潟市、2013年9月(口頭)

宮川他、西部北太平洋及びベーリング海上における黒色炭素エアロゾルの船上観測、日本地球惑星連合2014年大会、神奈川県横浜市、2014年5月(ポスター)

宮川他、エアロゾル粒子の多元特性評価を目指したエアロゾル複合分析計の開発、第31回エアロゾル科学・技術研究討論会、茨城県つくば市、2014年8月(招待口頭)

宮川他、ブラックカーボンの輸送に対する湿性沈着過程の影響-2015年春季の福江島での大気観測からの事例解析-、第56回大気環境学会、東京都新宿区、2015年9月(口頭)

宮川他、単一すす粒子計測装置によるブラックカーボンの地上・船上観測、ブルーアース2016、東京都港区、2016年3月(ポスター)

宮川他、東京における炭素性エアロゾルの濃度、起源、生成過程への排出規制の影響評価、第33回エアロゾル科学・技術研究討論会、大阪府堺市、2016年9月(ポスター)

宮川他、西部北太平洋における微小エアロゾル元素組成の観測、第34回エアロゾル科学・技術研究討論会、東京都江東区、2017年8月(口頭)

宮川他、放射性炭素同位体比と分子マーカーを用いた炭素性エアロゾルの発生源解析に関する研究、第58回大気環境学会、兵庫県神戸市、2017年9月

宮川他、地球表層の物質循環研究を志向した移動型プラットフォームによる大気組成観測:ドローンの活用例と海洋大気研究への期待、 第58回大気環境学会 特別集会、兵庫県神戸市、2017年年9月(招待口頭)

宮川他、蛍光染色に基づくバイオエアロゾル計数―陸域・海洋上での事例―、大気化学討論会, 香川県高松市、2017年10月(ポスター)

宮川他、南大洋・南太平洋における大気エアロゾル粒子の動態、ブルーアースサイエンス・テク2018、神奈川県横浜市、2018年1月(ポスター)

宮川他、UAVを用いた大気組成計測のための小型装置の検討、気象学会2018年度秋季大会、宮城県仙台市、2018年10月(ポスター)

宮川他、南大洋・南太平洋における大気エアロゾル粒子の動態ー雲粒生成に関連してー、ブルーアースサイエンス・テク2019、神奈川県横浜市、2019年1月(ポスター)

宮川他、Characterization of carbonaceous aerosols in Asian outflow in the spring of 2015: importance of non-fossil fuel sources、日本地球惑星科学連合2019年大会、千葉県千葉市、2019年5月(ポスター)

宮川他、小型エサロメータによるブラックカーボン計測の評価、第60回大気環境学会年会、東京都府中市、2019年9月(口頭)

宮川他、High-temporal-resolution elemental characterization of fine-mode aerosols in springtime Asian outflow: Emission and removal characteristics, and comparison with model simulation、日本地球惑星科学連合2020年大会、リモート開催、2020年7月(ポスター)

宮川他、2017年夏季の南大洋におけるエアロゾル粒子の船舶観測、第37回エアロゾル科学科学・技術研究討論会、リモート開催、2020年8月(口頭)

宮川他、福江島における微小エアロゾル元素組成・ブラックカーボンの高時間分解観測:モデルによる人為起源鉄排出量の過小評価に関する知見、第25回大気化学討論会、リモート開催、2020年11月(ポスター)


Outreach

新聞

2019/10/25 科学新聞 「春季東アジア域のブラックカーボン 約9割は化石燃料由来」

2019/10/16 日経産業新聞 「黒色炭素9割、化石燃料で発生」

2019/10/08 日刊工業新聞 「ブラックカーボン発生源 春季東アジア 化石燃料9割 海洋機構が解明」

2019/10/04 電気新聞 「BCは化石燃料由来 海洋研究開発機構 エアロゾルを分析」